精英家教網 > 高中數學 > 題目詳情

【題目】已知二次函數f(x)滿足f(x+1)﹣f(x)=2x(x∈R),且f(0)=1.
(1)求f(x)的解析式;
(2)若關于x的方程f(x)=x+m有區間(﹣1,2)上有唯一實數根,求實數的取值范圍(注:相等的實數根算一個).

【答案】
(1)解:設f(x)=ax2+bx+c(a≠0),代入f(x+1)﹣f(x)=2x,

得2ax+a+b=2x,對于x∈R恒成立,故 ,又由f(0)=1,得c=1,

解得a=1,b=﹣1,c=1,∴f(x)=x2﹣x+1.


(2)解:由方程f(x)=x+m得x2﹣2x+1﹣m=0,令h(x)=x2﹣2x+1﹣m,x∈(﹣1,2),

即要求函數h(x)在(﹣1,2)上有唯一的零點,

①h(﹣1)=0,則m=4,代入原方程得x=﹣1或3,不符合題意;

②若h(2)=0,則m=1,代入原方程得x=0或2,滿足題意,故m=1成立;

③若△=0,則m=0,代入原方程得x=1,滿足題意,故m=0成立;

④若m≠4且m≠1且m≠0時,由 得1<m<4.

綜上,實數m的取值范圍是{0}∪[1,4).


【解析】(1)根據二次函數f(x)滿足f(x+1)﹣f(x)=2x(x∈R),且f(0)=1,利用待定系數法,可得f(x)的解析式;(2)若關于x的方程f(x)=x+m有區間(﹣1,2)上有唯一實數根,則函數h(x)在(﹣1,2)上有唯一的零點,分類討論,可得實數m的取值范圍.
【考點精析】認真審題,首先需要了解函數的概念及其構成要素(函數三要素是定義域,對應法則和值域,而定義域和對應法則是起決定作用的要素,因為這二者確定后,值域也就相應得到確定,因此只有定義域和對應法則二者完全相同的函數才是同一函數),還要掌握二次函數的性質(增減性:當a>0時,對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在一次歌手大獎賽上,七位評委為歌手打出的分數如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一個最高分和一個最低分后,所剩數據的平均值和方差分別為(
A.9.4,0.484
B.9.4,0.016
C.9.5,0.04
D.9.5,0.016

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某人要利用無人機測量河流的寬度,如圖,從無人機A處測得正前方河流的兩岸B,C的俯角分別為75°,30°,此時無人機的高是60米,則河流的寬度BC等于(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,已知射線OA:x﹣y=0(x≥0),OB:2x+y=0(x≥0).過點P(1,0)作直線分別交射線OA,OB于點A,B.
(1)當AB的中點在直線x﹣2y=0上時,求直線AB的方程;
(2)當△AOB的面積取最小值時,求直線AB的方程.
(3)當PAPB取最小值時,求直線AB的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓O:x2+y2=r2(r>0),點P為圓O上任意一點(不在坐標軸上),過點P作傾斜角互補的兩條直線分別交圓O于另一點A,B.
(1)當直線PA的斜率為2時,
①若點A的坐標為(﹣ ,﹣ ),求點P的坐標;
②若點P的橫坐標為2,且PA=2PB,求r的值;
(2)當點P在圓O上移動時,求證:直線OP與AB的斜率之積為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司為激勵創新,計劃逐年加大研發資金投入,若該公司2015年全年投入研發資金超過130萬元,在此基礎上,每年投入的研發資金比上一年增長12%,則該公司全年投入的研發資金開始超過200萬元的年份是年.(參考數據:lg1.12≈0.05,lg1.3≈0.11,lg2≈0.30).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知命題p:方程 表示焦點在x軸上的橢圓,命題q:方程(k﹣1)x2+(k﹣3)y2=1表示雙曲線.若p∨q為真,p∧q為假,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知a>0,a≠1且loga3>loga2,若函數f(x)=logax在區間[a,2a]上的最大值與最小值之差為1.
(1)求a的值;
(2)解不等式 ;
(3)求函數g(x)=|logax﹣1|的單調區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知△ABC的頂點A(5,1),B(1,5).
(1)若A為直角△ABC的直角頂點,且頂點C在y軸上,求BC邊所在直線方程;
(2)若等腰△ABC的底邊為BC,且C為直線l:y=2x+3上一點,求點C的坐標.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视