精英家教網 > 高中數學 > 題目詳情
(2012•寶山區一模)方程x2-2x+5=0的復數根為
1±2i
1±2i
分析:可設x=a+bi(a,b∈R),利用兩復數相等得到關于a,b的方程組,解之即可.
解答:解:∵x2-2x+5=0,△=4-20=-16<0,
∴方程無實根,
設x=a+bi(a,b∈R),
則a2-b2+2abi-2a-2bi+5=0,
a2-b2-2a+5=0
2b(a-1)=0

∴a=1,b=±2.
∴x=1±2i.
故答案為:1±2i.
點評:本題考查復數的基本概念,考查復數相等,考查解方程組的能力,也可以直接通過求根公式得到答案,屬于基礎題,
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•寶山區一模)兩個圓錐有等長的母線,它們的側面展開圖恰好拼成一個圓,若它們的側面積之比為1:2,則它們的體積比是
1:
10
1:
10

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•寶山區一模)設f(x)是定義在R上的奇函數,且滿足f(x+3)=f(x),f(1)>1,f(2)=
2m-3
m+1
,則實數m的取值范圍是
(-1,
2
3
(-1,
2
3

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•寶山區一模)已知函數f(x)=log2x,若2,f(a1),f(a2),f(a3),…,f(an),2n+4,…,(n∈N*)成等差數列.
(1)求數列{an}(n∈N*)的通項公式;
(2)設g(k)是不等式log2x+log2(3
ak
-x
)≥2k+3(k∈N*)整數解的個數,求g(k);
(3)記數列{
12
an
}
的前n項和為Sn,是否存在正數λ,對任意正整數n,k,使Sn
ak
<λ2恒成立?若存在,求λ的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•寶山區一模)已知等差數列{an},a2=-2,a6=4,則a4=
1
1

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视