精英家教網 > 高中數學 > 題目詳情

【題目】雙紐線最早于1694年被瑞士數學家雅各布·伯努利用來描述他所發現的曲線.在平面直角坐標系中,把到定點,距離之積等于)的點的軌跡稱為雙紐線C.已知點是雙紐線C上一點,下列說法中正確的有(

①雙紐線C關于原點O中心對稱; ;

③雙紐線C上滿足的點P有兩個; 的最大值為.

A.①②B.①②④C.②③④D.①③

【答案】B

【解析】

對①,設動點,把關于原點對稱的點代入軌跡方程,顯然成立;

對②,根據的面積范圍證明即可.

對③,易得若軸上,再根據的軌跡方程求解即可.

對④,根據題中所給的定點,距離之積等于,再畫圖利用余弦定理分析中的邊長關系,進而利用三角形三邊的關系證明即可.

對①,設動點,由題可得的軌跡方程,把關于原點對稱的點代入軌跡方程顯然成立.故①正確;

對②,因為,.

,所以,

,故.故②正確;

對③,的中垂線即軸上.

故此時,代入,

可得,,僅有一個.故③錯誤;

對④,因為,,

,

因為,

.

,

所以.

,當且僅當共線時取等號.

,

,解得.故④正確.

故①②④正確.

故選:B

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,直線為參數,),曲線為參數),相切于點,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.

1)求的極坐標方程及點的極坐標;

2)已知直線與圓交于,兩點,記的面積為,的面積為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了保障某種藥品的主要藥理成分在國家藥品監督管理局規定的值范圍內,某制藥廠在該藥品的生產過程中,檢驗員在一天中按照規定每間隔2小時對該藥品進行檢測,每天檢測4次:每次檢測由檢驗員從該藥品生產線上隨機抽取20件產品進行檢測,測量其主要藥理成分含量(單位:)根據生產經驗,可以認為這條藥品生產線正常狀態下生產的產品的其主要藥理成分含量服從正態分布.

1)假設生產狀態正常,記表示某次抽取的20件產品中其主要藥理成分含量在之外的藥品件數,求的數學期望;

2)在一天的四次檢測中,如果有一次出現了主要藥理成分含量在之外的藥品,就認為這條生產線在這一天的生產過程可能出現異常情況,需對本次的生產過程進行檢查;如果有兩次或兩次以上出現了主要藥理成分含量在之外的藥品,則需停止生產并對原材料進行檢測.

①下面是檢驗員在某次抽取的20件藥品的主要藥理成分含量:

10.02

9.78

10.04

9.92

10.14

9.22

10.13

9.91

9.95

10.09

9.96

9.88

10.01

9.98

10.05

10.05

9.96

10.12

經計算得,.其中為抽取的第件藥品的主要藥理成分含量,用樣本平均數作為的估計值,用樣本標準差作為的估計值,利用估計值判斷是否需對本次的生產過程進行檢查?

②試確定一天中需停止生產并對原材料進行檢測的概率(精確到0.001.

附:若隨機變量服從正態分布,則,,,,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的焦點到直線的距離為

1)求拋物線的方程;

2)如圖,若,直線與拋物線相交于兩點,與直線相交于點,且,求面積的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校對高一年級學生寒假參加社區服務的次數進行了統計,隨機抽取了名學生作為樣本,得到這名學生參加社區服務的次數,根據此數據作出了頻率分布統計表和頻率分布直方圖如下:

(1)求表中的值和頻率分布直方圖中的值,并根據頻率分布直方圖估計該校高一學生寒假參加社區服務次數的中位數;

(2)如果用分層抽樣的方法從樣本服務次數在的人中共抽取6人,再從這6人中選2人,求2人服務次數都在的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直三棱柱中,,的中點.

1)求證:平面;

2)求證:平面平面.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】孫子定理是中國古代求解一次同余式組的方法,是數論中一個重要定理,最早可見于中國南北朝時期的數學著作《孫子算經》,年英國來華傳教士偉烈亞力將其問題的解法傳至歐洲,年英國數學家馬西森指出此法符合年由高斯得出的關于同余式解法的一般性定理,因而西方稱之為“中國剩余定理”.這個定理講的是一個關于整除的問題,現有這樣一個整除問題:將個整數中能被除余且被除余的數按由小到大的順序排成一列構成一數列,則此數列的項數是(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,直線的傾斜角為,且經過點,以坐標原點O為極點,軸正半軸為極軸建立極坐標系,直線,從原點O作射線交于點M,點N為射線OM上的點,滿足| ,記點N的軌跡為曲線C

1)①設動點,記是直線的向上方向的單位方向向量,且,以t為參數求直線的參數方程

②求曲線C的極坐標方程并化為直角坐標方程;

2)設直線與曲線C交于P,Q兩點,求的值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設橢圓的右頂點為A,上頂點為B.已知橢圓的離心率為,

(1)求橢圓的方程;

(2)設直線與橢圓交于,兩點,與直線交于點M,且點P,M均在第四象限.若的面積是面積的2倍,求的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视