【題目】設△ABC是邊長為4的正三角形,點P1 , P2 , P3 , 四等分線段BC(如圖所示)
(1)P為邊BC上一動點,求
的取值范圍?
(2)Q為線段AP1上一點,若 =m
+
,求實數m的值.
【答案】
(1)解:以BC所在直線為x軸,AP2所在直線為y軸,
P2為坐標原點,建立直角坐標系,
則A(0,2 ),B(﹣2,0),C(2,0),P1(﹣1,0),
設P(t,0)(﹣2≤t≤2),則 =(﹣t,2
),
=(2﹣t,0),
可得
=﹣t(2﹣t)+2
0=t2﹣2t=(t﹣1)2﹣1,(﹣2≤t≤2),
t=1時,取得最小值﹣1;t=﹣2時,取得最大值8.
則
的取值范圍為[﹣1,8]
(2)解:設Q(x,y),由A,Q,P1共線,
可得 =
,
即有y=2 x+2
,
則 =(x,2
x),
=(﹣2,﹣2
),
=(2,﹣2
),
若 =m
+
,
則 ,
解得m= .
【解析】(1)以BC所在直線為x軸,AP2所在直線為y軸,P2為坐標原點,建立直角坐標系,求得A,B,C,P1 , 的坐標,求得向量PA,PC的坐標,運用數量積的坐標表示,再由二次函數在閉區間上的值域求法可得;(2)設Q(x,y),由A,Q,P1共線,運用斜率相等,求得y關于x的式子,再分別求得向量AQ,AB,AC的坐標,得到m,x的方程組,即可解得m的值.
科目:高中數學 來源: 題型:
【題目】已知集合A={3,a2},集合B={0,b,1﹣a},且A∩B={1},則A∪B=( )
A.{0,1,3}
B.{1,2,4}
C.{0,1,2,3}
D.{0,1,2,3,4}
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知P為△ABC內一點,且滿足 ,記△ABP,△BCP,△ACP的面積依次為S1 , S2 , S3 , 則S1:S2:S3等于( )
A.1:2:3
B.1:4:9
C.2:3:1
D.3:1:2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設定義在R上的函數y=f(x)的導函數為f′(x).如果存在x0∈[a,b],使得f(b)-f(a)=f′(x0)(b-a)成立,則稱x0為函數f(x)在區間[a,b]上的“中值點”.那么函數f(x)=x3-3x在區間[-2,2]上的“中值點”為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com