精英家教網 > 高中數學 > 題目詳情

(本小題滿分12分)

在平面直角坐標系中,點到兩定點F1和F2的距離之和為,設點的軌跡是曲線.(1)求曲線的方程;   (2)若直線與曲線相交于不同兩點、(不是曲線和坐標軸的交點),以為直徑的圓過點,試判斷直線是否經過一定點,若是,求出定點坐標;若不是,說明理由.

 

【答案】

(1)   ;(2)直線過定點,定點坐標為

【解析】

試題分析:(1)設,由橢圓定義可知,

的軌跡是以為焦點,長半軸長為2的橢圓.

它的短半軸長,故曲線的方程為: 

(2)設

聯立  消去y,整理得

則 

因為以為直徑的圓過點,,即

解得:,且均滿足

時,的方程,直線過點,與已知矛盾;

時,的方程為,直線過定點

所以,直線過定點,定點坐標為

考點:本題主要考查橢圓的定義及標準方程,直線與橢圓的位置關系。

點評:典型題,關于橢圓的考查,往往以這種“連環題”的形式出現,首先求標準方程,往往不難。而涉及在直線與橢圓的位置關系,往往要利用韋達定理,實現“整體代換”。

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(文) (本小題滿分12分已知函數y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數的值域和最小正周期;
(2)求函數的遞減區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分12分)已知函數,且。①求的最大值及最小值;②求的在定義域上的單調區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產業建設工程三類,這三類工程所含項目的個數分別占總數的、.現有3名工人獨立地從中任選一個項目參與建設.求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分12分)

某民營企業生產A,B兩種產品,根據市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產品的利潤表示為投資的函數,并寫出它們的函數關系式.(2)該企業已籌集到10萬元資金,并全部投入到A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视