【題目】甲、乙、丙三人進行羽毛球練習賽,其中兩人比賽,另一人當裁判,每局比賽結束時,負的一方在下一局當裁判,設各局中雙方獲勝的概率均為 ,各局比賽的結果都相互獨立,第1局甲當裁判.
(1)求第4局甲當裁判的概率;
(2)X表示前4局中乙當裁判的次數,求X的數學期望.
【答案】
(1)解:令A1表示第2局結果為甲獲勝.A2表示第3局甲參加比賽時,結果為甲負.A表示第4局甲當裁判.
則A=A1A2,P(A)=P(A1A2)=P(A1)P(A2)= ;
(2)解:X的所有可能值為0,1,2.令A3表示第3局乙和丙比賽時,結果為乙勝.
B1表示第1局結果為乙獲勝,B2表示第2局乙和甲比賽時,結果為乙勝,B3表示第3局乙參加比賽時,結果為乙負,
則P(X=0)=P(B1B2 )=P(B1)P(B2)P(
)=
.
P(X=2)=P( B3)=P(
)P(B3)=
.
P(X=1)=1﹣P(X=0)﹣P(X=2)= .
從而EX=0× +1×
+2×
=
.
【解析】(1)令A1表示第2局結果為甲獲勝,A2表示第3局甲參加比賽時,結果為甲負,A表示第4局甲當裁判,分析其可能情況,每局比賽的結果相互獨立且互斥,利用獨立事件、互斥事件的概率求解即可.(2)X的所有可能值為0,1,2.分別求出X取每一個值的概率,列出分布列后求出期望值即可.
科目:高中數學 來源: 題型:
【題目】如圖,已知正四棱錐P﹣ABCD中,PA=AB=2,點M,N分別在PA,BD上,且 =
.
(1)求異面直線MN與PC所成角的大;
(2)求二面角N﹣PC﹣B的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的離心率
,過橢圓的上頂點
和右頂點
的直線與原點
的距離為
,
(1)求橢圓的方程;
(2)是否存在直線經過橢圓左焦點與橢圓
交于
,
兩點,使得以線段
為直徑的圓恰好經過坐標原點
?若存在,求出直線
方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四棱柱ABCD﹣A1B1C1D1的底面是邊長為2的菱形,且∠BAD= ,AA1⊥平面ABCD,AA1=1,設E為CD中點
(1)求證:D1E⊥平面BEC1
(2)點F在線段A1B1上,且AF∥平面BEC1 , 求平面ADF和平面BEC1所成銳角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校1800名學生在一次百米測試中,成績全部介于13秒與18秒之間,抽取其中50名學生組成一個樣本,將測試結果按如下方式分成五組:第一組,第二組
……,第五組
,如圖是按上述分組方法得到的頻率分布直方圖.
(1)請估計學校1800名學生中,成績屬于第四組的人數;
(2)若成績小于15秒認為良好,求該樣本中在這次百米測試中成績良好的人數;
(3)請根據頻率分布直方圖,求樣本數據的眾數、平均數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法:①第二象限角比第一象限角大;②設是第二象限角,則
;③三角形的內角是第一象限角或第二象限角;④函數
是最小正周期為
的周期函數;⑤在△ABC中,若
,則A>B.其中正確的是___________ (寫出所有正確說法的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線的中心在原點,對稱軸為坐標軸,一條漸近線方程為,右焦點
,雙曲線的實軸為
,
為雙曲線上一點(不同于
,
),直線
,
分別與直線
交于
,
兩點.
()求雙曲線的方程.
()證明
為定值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com