精英家教網 > 高中數學 > 題目詳情
已知函數的定義域為集合,關于的不等式的解集為,若,求實數的取值范圍.
.

試題分析:根據對數函數真數大于0可求得集合A,再根據指數函數的單調性可求得B={}因為 所以可求得a的范圍.
試題解析:要使有意義,則,解得
        4分
,解得,
        4分

解得
故實數的取值范圍是  12分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知二次函數f(x)滿足f(x+1)-f(x)=2x且f(0)=1.
(1)求f(x)的解析式;
(2)當x∈[-1,1]時,不等式:f(x)>2x+m恒成立,求實數m的范圍.
(3)設g(t)=f(2t+a),t∈[-1,1],求g(t)的最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=x2+ax+3-a,a∈R.
(1)求a的取值范圍,使y=f(x)在閉區間[-1,3]上是單調函數;
(2)當a=-1時,求該函數在[0,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知a=(2
1
4
)
1
2
-(9.6)0-(3
3
8
)-
2
3
+(1.5)-2
,b=(log43+log83)(log32+log92),求a+2b的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知函數的圖象恒過定點,若點與點、在同一直線上,則的值為         .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

定義在[-1,1]上的奇函數f(x),已知當x∈[-1,0]時,
f(x)= (a∈R).
(1)求f(x)在[0,1]上的最大值;
(2)若f(x)是[0,1]上的增函數,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(2014·鄭州模擬)已知函數f(x)=ex+ax,g(x)=ax-lnx,其中a≤0.
(1)求f(x)的極值.
(2)若存在區間M,使f(x)和g(x)在區間M上具有相同的單調性,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

三個數的大小關系為____________       .(按從小到大的順序填寫)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

,,則(     )
A.b<a<cB.c<a<bC.c<b<aD.a<c<b

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视