精英家教網 > 高中數學 > 題目詳情
設f(x)=
1
3
x3+
1
2
ax2+2bx+c,若當x∈(0,1]時,f(x)取得極大值,x∈(1,2]時,f(x)取得極小值,則
a-1
b-2
的取值范圍是
(1,4]
(1,4]
分析:據極大值點左邊導數為正右邊導數為負,極小值點左邊導數為負右邊導數為正得a,b的約束條件,據線性規劃求出最值.
解答:解:∵f(x)=
1
3
x3+
1
2
x2+2bx+c

∴f′(x)=x2+ax+2b
∵函數f(x)在區間(0,1]內取得極大值,在區間(1,2]內取得極小值
∴f′(x)=x2+ax+2b=0在(0,1]和(1,2]內各有一個根
f′(0)>0,f′(1)≤0,f′(2)≥0
b>0
a+2b+1≤
a+b+2≥0
0
,在aOb坐標系中畫出其表示的區域,如圖,
b-2
a-1
表示點A(1,2)與可行域內的點B連線的斜率,
當B(x,y)=M(-1,0)時,
b-2
a-1
最大,最大為1;
當B(x,y)=N(-3,1)時,
b-2
a-1
最小,最小為
1
4
;
所以
b-2
a-1
∈[
1
4
,1)⇒
a-1
b-2
(1,4].
故答案為(1,4].
點評:考查學生利用導數研究函數極值的能力,以及會進行簡單的線性規劃的能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設f(x)=
13
x3+mx2+nx.
(1)如果g(x)=f′(x)-2x-3在x=-2處取得最小值-5,求f(x)的解析式;
(2)如果m+n<10(m,n∈N+),f(x)在單調遞減區間的長度是正整數,試求m和n的值.(注:區間(a,b)的長度為b-a)

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)=-
1
3
x3+
1
2
x2+2ax.若f(x)在 (
2
3
,+∞
)存在單調增區間,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)=
13
x3+ax2
+5x+6在區間[1,3]上為單調減函數,求實數a的取值范圍取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)=
13
x3+x2-3x+5
(1)求函數f(x)的單調遞增區間、遞減區間;
(2)當x∈[-1,2]時,求函數的最值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视