【題目】平面直角坐標系xOy中,拋物線E頂點在坐標原點,焦點為.以坐標原點為極點,x軸非負半軸為極軸建立極坐標系.
(Ⅰ)求拋物線E的極坐標方程;
(Ⅱ)過點傾斜角為
的直線l交E于M,N兩點,若
,求
.
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程為
.(
為參數)以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,點
的極坐標為
,直線
的極坐標方程為
.
(1)求的直角坐標和 l的直角坐標方程;
(2)把曲線上各點的橫坐標伸長為原來的
倍,縱坐標伸長為原來的
倍,得到曲線
,
為
上動點,求
中點
到直線
距離的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知邊長為2的菱形ABCD,其中∠BAD=120°,AE∥CF,CF⊥平面ABCD,,
.
(1)求證:平面BDE⊥平面BDF;
(2)求二面角D﹣EF﹣B的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四棱錐的底面ABCD是邊長為3的正方形,
平面ABCD,
,E為PD中點,過EB作平面
分別與線段PA、PC交于點M,N,且
,則
________;四邊形EMBN的面積為________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線上任意一點(異于頂點)與雙曲線兩頂點連線的斜率之積為
.
(I)求雙曲線漸近線的方程;
(Ⅱ)過橢圓上任意一點P(P不在C的漸近線上)分別作平行于雙曲線兩條漸近線的直線,交兩漸近線于
兩點,且
,是否存在
使得該橢圓的離心率為
,若存在,求出橢圓方程:若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的中心為坐標原點O,橢圓短半軸長為1,動點
在直線
,(
為長半軸,
為半焦距)上.
(1)求橢圓的標準方程
(2)求以OM為直徑且被直線截得的弦長為2的圓的方程;
(3)設F是橢圓的右焦點,過點F作OM的垂線與以OM為直徑的圓交于點N.求證:線段ON的長為定值,并求出這個定值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com