精英家教網 > 高中數學 > 題目詳情
已知A、B、C、D為圓O上的四點,直線DE為圓O的切線,ACDE,AC與BD相交于H點
(Ⅰ)求證:BD平分∠ABC
(Ⅱ)若AB=4,AD=6,BD=8,求AH的長.
(Ⅰ)∵ACDE,直線DE為圓O的切線,∴D是弧
AC
的中點,即
AD
=
DC

又∠ABD,∠DBC與分別是兩弧
AD
DC
所對的圓周角,故有∠ABD=∠DBC,
所以BD平分∠ABC
(Ⅱ)∵由圖∠CAB=∠CDB且∠ABD=∠DBC
∴△ABH△DBC,∴
AH
CD
=
AB
BD

AD
=
DC

∴AD=DC,
AH
AD
=
AB
BD

∵AB=4,AD=6,BD=8
∴AH=3
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,過點B作射線BBlAC.動點D從點A出發沿射線AC方向以每秒5個單位的速度運動,同時動點E從點C出發沿射線AC方向以每秒3個單位的速度運動.過點D作DH⊥AB于H,過點E作EF⊥AC交射線BB1于F,G是EF中點,連接DG.設點D運動的時間為t秒.
(1)當t為何值時,AD=AB,并求出此時DE的長度;
(2)當△DEG與△ACB相似時,求t的值;
(3)以DH所在直線為對稱軸,線段AC經軸對稱變換后的圖形為A′C′.
①當t>
3
5
時,連接C′C,設四邊形ACC′A′的面積為S,求S關于t的函數關系式;
②當線段A′C′與射線BB,有公共點時,求t的取值范圍(寫出答案即可).

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖,AB為⊙O的直徑,弦AC、BD交于點P,若AB=3,CD=1,則sin∠APD的值為( 。
A.
1
3
B.
2
3
C.
2
3
D.
2
2
3

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

⊙O的兩條弦AB、CD相交于點P,已知AP=2cm,BP=6cm,CP:PD=1:3,則CD=______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖,PC與圓O相切于點C,直線PO交圓O于A,B兩點,弦CD垂直AB于E.則下面結論中,錯誤的結論是(  )
A.△BEC△DEAB.∠ACE=∠ACPC.DE2=OE•EPD.PC2=PA•AB

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖,已知圓O1與圓O2外切于點P,直線AB是兩圓的外公切線,分別與兩圓相切于A、B兩點,AC是圓O1的直徑,過C作圓O2的切線,切點為D.
(Ⅰ)求證:C,P,B三點共線;
(Ⅱ)求證:CD=CA.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

采用系統抽樣方法從人中抽取人做問卷調查,為此將他們隨機編號為,,……,,分組后在第一組采用簡單隨機抽樣的方法抽到的號碼為.抽到的人中,編號落入區間的人做問卷,編號落入區間的人做問卷,其余的人做問卷.則抽到的人中,做問卷的人數為 ( )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

[2012·四川高考]交通管理部門為了解機動車駕駛員(簡稱駕駛員)對某新法規的知曉情況,對甲、乙、丙、丁四個社區做分層抽樣調查.假設四個社區駕駛員的總人數為N,其中甲社區有駕駛員96人.若在甲、乙、丙、丁四個社區抽取駕駛員的人數分別為12,21,25,43,則這四個社區駕駛員的總人數N為(  )
A.101B.808C.1212D.2012

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本試卷共40分,考試時間30分鐘)
21.(選做題)本大題包括A,B,C,D共4小題,請從這4題中選做2小題. 每小題10分,共20分.請在答題卡上準確填涂題目標記. 解答時應寫出文字說明、證明過程或演算步驟.
A. 選修4-1:幾何證明選講
如圖,是邊長為的正方形,以為圓心,為半徑的圓弧與以為直徑的半⊙O交于點,延長
(1)求證:的中點;(2)求線段的長.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视