【題目】由不等式組 確定的平面區域記為Ω1 , 不等式組
確定的平面區域記為Ω2 , 在Ω1中隨機取一點,則該點恰好在Ω2內的概率為( )
A.
B.
C.
D.
科目:高中數學 來源: 題型:
【題目】設函數f(x)=2|x﹣1|+x﹣1,g(x)=16x2﹣8x+1.記f(x)≤1的解集為M,g(x)≤4的解集為N.
(1)求M;
(2)當x∈M∩N時,證明:x2f(x)+x[f(x)]2≤ .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某班名同學的數學小測成績的頻率分布表如圖所示,其中
,且分數在
的有
人.
(1)求的值;
(2)若分數在的人數是分數在
的人數的
,求從不及格的人中任意選取3人,其中分數在50分以下的人數為
,求
的數學期.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】通過隨機詢問72名不同性別的大學生在購買食物時是否看營養說明,得到如下列聯表:
男 | 女 | 總計 | ||
讀營養說明 | 16 | 28 | 44 | |
不讀營養說明 | 20 | 8 | 28 | |
總計 | 36 | 36 | 72 |
(1)根據以上列聯表判斷,能否在犯錯誤的概率不超過0.005的前提下認為性別和是否看營養說明有關系呢?
(2)從被詢問的28名不讀營養說明的大學生中,隨機抽取2名學生,求抽到女生人數
的分布列及數學期望.
附:
0.010 | 0.005 | 0.001 | |
6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在棱長為2的正方體ABCD﹣A1B1C1D1中,E,F,M,N分別是棱AB,AD,A1B1 , A1D1的中點,點P,Q分別在棱DD1 , BB1上移動,且DP=BQ=λ(0<λ<2)
(1)當λ=1時,證明:直線BC1∥平面EFPQ;
(2)是否存在λ,使面EFPQ與面PQMN所成的二面角為直二面角?若存在,求出λ的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四邊形ABCD為正方形.PD⊥平面ABCD,∠DPC=30°,AF⊥PC于點F,FE∥CD,交PD于點E.
(1)證明:CF⊥平面ADF;
(2)求二面角D﹣AF﹣E的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com