精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓C)的左右焦點分別為.橢圓C上任一點P都滿足,并且該橢圓過點.

求橢圓C的方程;

Ⅱ)過點的直線l與橢圓C交于A,B兩點,過點Ax軸的垂線,交該橢圓于點M,求證:三點共線.

【答案】Ⅱ)見解析

【解析】

()根據求出,再將點代入橢圓方程得到,即可求出結果;Ⅱ)由()確定的坐標,設,,,以及直線的方程,聯立直線與橢圓方程,結合韋達定理,求出直線的方程,即可證明結論成立.

設出

()依題意,,故.

代入中,解得,故橢圓 .…

Ⅱ)由題知直線的斜率必存在,設的方程為 .……………

,,,聯立.

,

由題可得直線方程為. …

.

直線方程為.

,整理得

,即直線過點(1,0).

橢圓的左焦點坐標為,∴三點,在同一直線上.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】橢圓過點,離心率為,左右焦點分別為,過點的直線交橢圓于兩點。

(1)求橢圓的方程;

(2)當的面積為時,求直線的方程。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某媒體對男女延遲退休這一公眾關注的問題進行了民意調查,下表是在某單位調查后得到的數據(人數)

贊同

反對

合計

5

6

11

11

3

14

合計

16

9

25

1)能否有90%以上的把握認為對這一問題的看法與性別有關?

2)進一步調查:

①從贊同男女延遲退休人中選出人進行陳述發言,求事件男士和女士各至少有人發言的概率;

②從反對男女延遲退休人中選出人進行座談,設選出的人中女士人數為,求的分布列和數學期望.

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知動圓過定點,且與定直線相切.

(1)求動圓圓心的軌跡的方程;

(2)若是軌跡的動弦,且, 分別以為切點作軌跡的切線,設兩切線交點為,證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱錐P-ABCD,底面ABCD是邊長為的正方形,平面PAC底面ABCD,PA=PC=

1)求證:PB=PD;

2)若點M,N分別是棱PA,PC的中點,平面DMN與棱PB的交點Q,則在線段BC上是否存在一點H,使得DQPH,若存在,BH的長,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某研究所計劃利用神七宇宙飛船進行新產品搭載實驗,計劃搭載新產品AB,要根據該產品的研制成本、產品重量、搭載實驗費用和預計產生收益來決定具體安排,通過調查,有關數據如表:


產品A()

產品B()


研制成本與塔載
費用之和(萬元/)

20

30

計劃最大資
金額300萬元

產品重量(千克/)

10

5

最大搭載
重量110千克

預計收益(萬元/)

80

60


試問:如何安排這兩種產品的件數進行搭載,才能使總預計收益達到最大,最大收益是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《山東省高考改革試點方案》規定:從2017年秋季高中入學的新生開始,不分文理科;2020年高考總成績由語數外三門統考科目和物理、化學等六門選考科目組成,將每門選考科目的考生原始成績從高到低劃分為、、8個等級,參照正態分布原則,確定各等級人數所占比例分別為3%、7%、16%24%、24%16%、7%3%,選考科目成績計入考生總成績時,將AE等級內的考生原始成績,依照等比例轉換法則,分別轉換到、、、、、八個分數區間,得到考生的等級成績.某市高一學生共6000人,為給高一學生合理選科提供依據,對六門選考科目進行測試,其中化學考試原始成績大致服從正態分布

1)求該市化學原始成績在區間的人數;

2)以各等級人數所占比例作為各分數區間發生的概率,按高考改革方案,若從全省考生中隨機抽取3人,記X表示這3人中等級成績在區間的人數,求

(附:若隨機變量,則,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司為了鼓勵運動提高所有用戶的身體素質,特推出一款運動計步數的軟件,所有用戶都可以通過每天累計的步數瓜分紅包,大大增加了用戶走步的積極性,所以該軟件深受廣大用戶的歡迎.該公司為了研究日平均走步數和性別是否有關,統計了20191月份所有用戶的日平均步數,規定日平均步數不少于8000的為運動達人,步數在8000以下的為非運動達人,采用按性別分層抽樣的方式抽取了100個用戶,得到如下列聯表:

運動達人

非運動達人

總計

35

60

26

總計

100

1)(i)將列聯表補充完整;

ii)據此列聯表判斷,能否有的把握認為日平均走步數和性別是否有關?

2)從樣本中的運動達人中抽取7人參加幸運抽獎活動,通過抽獎共產生2位幸運用戶,求這2位幸運用戶恰好男用戶和女用戶各一位的概率.

附:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】“回文數”是指從左到右與從右到左讀都一樣的正整數,如22121,3553等.顯然2位“回文數”共9個:1122,33,…,99.現從9個不同2位“回文數”中任取1個乘以4,其結果記為X;從9個不同2位“回文數”中任取2個相加,其結果記為Y

1)求X為“回文數”的概率;

2)設隨機變量表示X,Y兩數中“回文數”的個數,求的概率分布和數學期望

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视