精英家教網 > 高中數學 > 題目詳情

【題目】已知函數 在點 處的切線方程是 .

(1)求 , 的值及函數 的最大值;

(2)若實數 , 滿足

1)證明: ;

2)若 ,證明: .

【答案】(1)時,.(2)(i)見解析;(ii)見解析.

【解析】分析:(求出,由可得確定函數的解析式,分別令求得的范圍,可得函數增區間,求得的范圍,可得函數的減區間;)(結合),可得,即.

又因為,所以,故;(

可得,,利用導數研究函數的單調性,可得從而得,,進而可得結果.

詳解(Ⅰ)

由題意有,解得

,

,所以為增函數,在為減函數

故有當時,

Ⅱ)證明:

(。,

,所以,即.

又因為,所以,故.

(ⅱ)法一:

由(1)知

上單調遞增

法二:,

構造函數,,

因為,所以,

即當時,,所以為增函數,

所以,,故

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數方程為為參數).以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,圓的極坐標方程為.

(1)求直線的普通方程與圓的直角坐標方程;

(2)設動點在圓上,動線段的中點的軌跡為,與直線交點為,且直角坐標系中,點的橫坐標大于點的橫坐標,求點的直角坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知,若直線于點,點是直線上的一動點,是線段的中點,且,點的軌跡為曲線

(1)求曲線的方程;

(2)過點作直線于點,交軸于點,過作直線,于點.試判斷是否為定值?若是,求出其定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在極坐標系中,已知圓的圓心為,半徑為.以極點為原點,極軸方向為軸正半軸方向,利用相同單位長度建立平面直角坐標系,直線的參數方程為為參數,).

(Ⅰ)寫出圓的極坐標方程和直線的普通方程;

(Ⅱ)若直線與圓交于、兩點,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖是一個半圓形湖面景點的平面示意圖.已知為直徑,且km,為圓心,為圓周上靠近的一點,為圓周上靠近的一點,且.現在準備從經過建造一條觀光路線,其中是圓弧是線段.,觀光路線總長為.

1)求關于的函數解析式,并指出該函數的定義域;

2)求觀光路線總長的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出下列命題:

原命題為真,它的否命題為假;

原命題為真,它的逆命題不一定為真;

一個命題的逆命題為真,它的否命題一定為真;

一個命題的逆否命題為真,它的否命題一定為真;

⑤“,則的解集為的逆命題.

其中真命題是___________.把你認為正確命題的序號都填在橫線上

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】近年空氣質量逐步惡化,霧霾天氣現象出現增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關,在某醫院隨機對心肺疾病入院的人進行問卷調查,得到了如下的列聯表:

患心肺疾病

不患心肺疾病

合計

合計

(1)用分層抽樣的方法在患心肺疾病的人群中抽人,其中男性抽多少人?

(2)在上述抽取的人中選人,求恰好有名女性的概率;

(3)為了研究心肺疾病是否與性別有關,請計算出統計量,你有多大把握認為心肺疾病與性別有關?

下面的臨界值表供參考:

參考公式: ,其中.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若關于x的不等式的解集是,

(1)求a的值;

(2)求不等式的解集.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视