(本小題滿分14分)
如圖,△ABC內接于圓O,AB是圓O的直徑,
,
,設AE與平面ABC所成的角為
,且
,四邊形DCBE為平行四邊形,DC
平面ABC.
(1)求三棱錐C-ABE的體積;
(2)證明:平面ACD平面
;
(3)在CD上是否存在一點M,使得MO//平面?
證明你的結論.
解:(1)∵四邊形DCBE為平行四邊形 ∴
∵ DC平面ABC ∴
平面ABC
∴為AE與平面ABC所成的角,即
=
--------------------2分
在Rt△ABE中,由,
得
------------3分
∵AB是圓O的直徑 ∴ ∴
∴
----------------------------------------4分
∴------------------5分
(2)證明:∵ DC平面ABC ,
平面ABC ∴
. --------------------6分
∵且
∴
平面ADC.
∵DE//BC ∴平面ADC ---------------------------------------8分
又∵平面ADE ∴平面ACD
平面
--------9分
(3)在CD上存在點
,使得MO
平面
,該點
為
的中點.------------10分
證明如下:
如圖,取的中點
,連MO、MN、NO,
∵M、N、O分別為CD、BE、AB的中點,
∴.----------------------------------------------11分
∵平面ADE,
平面ADE,
∴ ------------------------------------------------------12分
同理可得NO//平面ADE.
∵,∴平面MNO//平面ADE.--------------------13分
∵平面MNO,∴MO//平面ADE. -------------14分(其它證法請參照給分)
科目:高中數學 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分14分)設橢圓C1的方程為(a>b>0),曲線C2的方程為y=
,且曲線C1與C2在第一象限內只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數學 來源:2011年江西省撫州市教研室高二上學期期末數學理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點(
)在函數
的圖像上,其中
=
.
(1)證明:數列}是等比數列;
(2)設,求
及數列{
}的通項公式;
(3)記,求數列{
}的前n項和
,并證明
.
查看答案和解析>>
科目:高中數學 來源:2015屆山東省威海市高一上學期期末考試數學試卷(解析版) 題型:解答題
(本小題滿分14分)
某網店對一應季商品過去20天的銷售價格及銷售量進行了監測統計發現,第天(
)的銷售價格(單位:元)為
,第
天的銷售量為
,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關于第
天的函數關系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年廣東省高三下學期第一次月考文科數學試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點
處的切線與直線
平行.
⑴ 求,
滿足的關系式;
⑵ 若上恒成立,求
的取值范圍;
⑶ 證明:(
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com