【題目】若無窮數列滿足:只要
,必有
,則稱
具有性質
.
(1)若具有性質
,且
,
,求
;
(2)若無窮數列是等差數列,無窮數列
是公比為正數的等比數列,
,
,
判斷
是否具有性質
,并說明理由;
(3)設是無窮數列,已知
.求證:“對任意
都具有性質
”的充要條件為“
是常數列”.
【答案】(1).(2)
不具有性質
.(3)見解析.
【解析】試題分析:(1)根據已知條件,得到,結合
求解即可.
(2)根據的公差為
,
的公比為
,寫出通項公式,從而可得
.
通過計算,
,
,
,即知
不具有性質
.
(3)從充分性、必要性兩方面加以證明,其中必要性用反證法證明.
試題解析:(1)因為,所以
,
,
.
于是,又因為
,解得
.
(2)的公差為
,
的公比為
,
所以,
.
.
,但
,
,
,
所以不具有性質
.
[證](3)充分性:
當為常數列時,
.
對任意給定的,只要
,則由
,必有
.
充分性得證.
必要性:
用反證法證明.假設不是常數列,則存在
,
使得,而
.
下面證明存在滿足的
,使得
,但
.
設,取
,使得
,則
,
,故存在
使得
.
取,因為
(
),所以
,
依此類推,得.
但,即
.
所以不具有性質
,矛盾.
必要性得證.
綜上,“對任意,
都具有性質
”的充要條件為“
是常數列”.
科目:高中數學 來源: 題型:
【題目】在測試中,客觀題難度的計算公式為,其中
為第
題的難度,
為答對該題的人數,
為參加測試的總人數.現對某校高三年級240名學生進行一次測試.共5道客觀題.測試前根據對學生的了解,預估了每道題的難度,如表所示:
測試后,隨機抽取了 20名學生的答題數據進行統計,結果如下
(1)根據題中數據,估計這240名學生中第5題的實測答對人數;
(2)從抽取的20名學生中再隨機抽取2名學生,記這2名學生中第5題答對的人數為,求
的分布列和數學期望;
(3)定義統計量,其中
為第
題的實測難度,
為第
題的預估難度
.規定:若
,則稱該次測試的難度預估合理,否則為不合理.試據此判斷本次測試的難度預估是否合理.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩名同學準備參加考試,在正式考試之前進行了十次模擬測試,測試成績如下:
甲:137,121,131,120,129,119,132,123,125,133
乙:110,130,147,127,146,114,126,110,144,146
(1)畫出甲、乙兩人成績的莖葉圖,求出甲同學成績的平均數和方差,并根據莖葉圖,寫出甲、乙兩位同學平均成績以及兩位同學成績的中位數的大小關系的結論;
(2)規定成績超過127為“良好”,現在老師分別從甲、乙兩人成績中各隨機選出一個,求選出成績“良好”的個數的分布列和數學期望.
(注:方差,其中
為
的平均數)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(其中
)在點
處的切線斜率為1.
(1)用表示
;
(2)設,若
對定義域內的
恒成立,求實數
的取值范圍;
(3)在(2)的前提下,如果,證明:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解學生的身體狀況,某校隨機抽取了一批學生測量體重,經統計,這批學生的體重數據(單位:千克)全部介于至
之間,將數據分成以下
組,第一組
,第二組
,第三組
,第四組,第五組
,得到如圖所示的頻率分布直方圖,現采用分層抽樣的方法,從第
、
、
組中隨機抽取
名學生做初檢.
(Ⅰ)求每組抽取的學生人數.
(Ⅱ)若從名學生中再次隨機抽取
名學生進行復檢,求這
名學生不在同一組的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】老師在四個不同的盒子里面放了4張不同的撲克牌,分別是紅桃,梅花
,方片
以及黑桃
,讓明、小紅、小張、小李四個人進行猜測:
小明說:第1個盒子里面放的是梅花,第3個盒子里面放的是方片
;
小紅說:第2個盒子里面飯的是梅花,第3個盒子里放的是黑桃
;
小張說:第4個盒子里面放的是黑桃,第2個盒子里面放的是方片
;
小李說:第4個盒子里面放的是紅桃,第3個盒子里面放的是方片
;
老師說:“小明、小紅、小張、小李,你們都只說對了一半.”則可以推測,第4個盒子里裝的是( )
A. 紅桃或黑桃
B. 紅桃
或梅花
C. 黑桃或方片
D. 黑桃
或梅花
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市舉行“中學生詩詞大賽”,分初賽和復賽兩個階段進行,規定:初賽成績大于90分的具有復賽資格,某校有800名學生參加了初賽,所有學生的成績均在區間內,其頻率分布直方圖如圖.
(Ⅰ)求獲得復賽資格的人數;
(Ⅱ)從初賽得分在區間的參賽者中,利用分層抽樣的方法隨機抽取
人參加學校座談交流,那么從得分在區間
與
各抽取多少人?
(Ⅲ)從(Ⅱ)抽取的人中,選出
人參加全市座談交流,設
表示得分在區間
中參加全市座談交流的人數,求
的分布列及數學期望E(X).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在R上的奇函數滿足
,且在[0,1)上單調遞減,若方程
在[0,1)上有實數根,則方程
在區間[-1,7]上所有實根之和是
A. 12 B. 14 C. 6 D. 7
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解今年某校高三畢業班準備報考飛行員學生的體重情況,將所得的數據整理后,畫出了頻率分布直方圖(如圖),已知圖中從左到右的前3個小組的頻率之比為1:2:3,其中第2小組的頻數為15.
(1)求該校報考飛行員的總人數;
(2)以這所學校的樣本數據來估計全省的總體數據,若從全省報考飛行員的同學中(人數很多)任選三人,設表示體重超過65公斤的學生人數,求
的分布列及數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com