【題目】請你設計一個包裝盒.如圖所示,ABCD是邊長為60 cm的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得A,B,C,D四個點重合于圖中的點P,正好形成一個正四棱柱形狀的包裝盒.E、F在AB上,是被切去的一個等腰直角三角形斜邊的兩個端點.設AE=FB=x(cm).
(1)若廣告商要求包裝盒的側面積S(cm2)最大,試問x應取何值?
(2)某廠商要求包裝盒的容積V(cm3)最大,試問x應取何值?并求出此時包裝盒的高與底面邊長的比值.
【答案】(1) 當x=15時,S取得最大值.(2) x=20,包裝盒的高與底面邊長的比值為
【解析】試題分析:(1)先設包裝盒的高為,底面邊長為
,寫出
,
與
的關系式,并注明
的取值范圍,再利用側面積公式表示出包裝盒側面積
關于
的函數解析式,最后求出何時它取得最大值即可;
(2)利用體積公式表示出包裝盒容積關于
的函數解析式,利用導數知識求出何時它取得的最大值即可.
設包裝盒的高為,底面邊長為
由已知得
(1)∵2分
∴當時,
取得最大值 3分
(2)根據題意有5分
∴。
由得,
(舍)或
。
∴當時
;當
時
7分
∴當時取得極大值,也是最大值,此時包裝盒的高與底面邊長的比值為
即包裝盒的高與底面邊長的比值為10分.
科目:高中數學 來源: 題型:
【題目】某大學為調研學生在A,B兩家餐廳用餐的滿意度,從在A,B兩家餐廳都用過餐的學生中隨機抽取了100人,每人分別對這兩家餐廳進行評分,滿分均為60分.
整理評分數據,將分數以為組距分成
組:
,
,
,
,
,
,得到A餐廳分數的頻率分布直方圖,和B餐廳分數的頻數分布表:
B餐廳分數頻數分布表 | |
分數區間 | 頻數 |
(Ⅰ)在抽樣的100人中,求對A餐廳評分低于30的人數;
(Ⅱ)從對B餐廳評分在范圍內的人中隨機選出2人,求2人中恰有1人評分在
范圍內的概率;
(Ⅲ)如果從A,B兩家餐廳中選擇一家用餐,你會選擇哪一家?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】①設三個正實數a , b , c , 滿足 ,求證:a , b , c一定是某一個三角形的三條邊的長;
②設n個正實數 a1,a2,...an 滿足不等式 (其中
),求證: a1,a2,...an 中任何三個數都是某一個三角形的三條邊的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,直線AB的方程為3x﹣2y﹣1=0,直線AC的方程為2x+3y﹣18=0.直線BC的方程為3x+4y﹣m=0(m≠25).
(1)求證:△ABC為直角三角形;
(2)當△ABC的BC邊上的高為1時,求m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點,點
是橢圓
:
上任意一點,線段
的垂直平分線
交于點
,點
的軌跡記為曲線
.
(Ⅰ)求曲線的方程;
(Ⅱ)過的直線交曲線
于不同的
,
兩點,交
軸于點
,已知
,
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
(
)的左焦點為
,左準線方程為
.
(1)求橢圓的標準方程;
(2)已知直線交橢圓
于
,
兩點.
①若直線經過橢圓
的左焦點
,交
軸于點
,且滿足
,
.求證:
為定值;
②若(
為原點),求
面積的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com