精英家教網 > 高中數學 > 題目詳情

【題目】設函數f(x)=cos(ωx+φ)(ω>0,﹣ <φ<0)的最小正周期為π,且f( )=

(1)求ω和φ的值;
(2)在給定坐標系中作出函數f(x)在[0,π]上的圖象.

【答案】
(1)解:周期T= =π,∴ω=2,

∵f( )=cos( φ)=cos( +φ)=﹣sinφ=

∵﹣ <φ<0∴φ=﹣


(2)解:由(1)知f(x)=cos(2x﹣ ),列表如下:

2x﹣

0

π

x

0

π

f(x)

1

0

﹣1

0

在給定坐標系中作出函數f(x)在[0,π]上的圖象如下:


【解析】(1)由周期公式T= =π,可得ω=2,由f( )=cos( φ)=cos( +φ)=﹣sinφ= 及﹣ <φ<0可得φ=﹣ .(2)列表,描點即用五點法作出函數y=cos(2x﹣ )的圖象.
【考點精析】關于本題考查的五點法作函數y=Asin(ωx+φ)的圖象,需要了解描點法及其特例—五點作圖法(正、余弦曲線),三點二線作圖法(正、余切曲線)才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數=lnx+ax2+(2a+1)x

(1)討論的單調性;

(2)當a﹤0時,證明

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,M、N分別為CD和A1D1的中點,那么異面直線AM與BN 所成的角是(
A.90°
B.60°
C.45°
D.30°

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】學校組織學生參加某項比賽,參賽選手必須有很好的語言表達能力和文字組織能力.學校對10位已入圍的學生進行語言表達能力和文字組織能力的測試,測試成績分為三個等級,其統計結果如下表:

語言表達能力

文字組織能力

2

2

0

1

1

0

1

由于部分數據丟失,只知道從這10位參加測試的學生中隨機抽取一位,抽到語言表達能力或文字組織能力為的學生的概率為.

(Ⅰ)求, 的值;

(Ⅱ)從測試成績均為的學生中任意抽取2位,求其中至少有一位語言表達能力或文字組織能力為的學生的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】把函數y=sinx的圖象上所有點的橫坐標都縮小到原來的一半,縱坐標保持不變,再把圖象向左平移 個單位,這時對應于這個圖象的解析式為( )
A.y=cos2x
B.y=﹣sin2x
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知在直角坐標系 中,圓錐曲線 的參數方程為 為參數),定點 , 是圓錐曲線 的左、右焦點.
(1)以坐標原點為極點, 軸正半軸為極軸建立極坐標系,求經過點 且平行于直線 的直線 的極坐標方程;
(2)設(1)中直線 與圓錐曲線 交于 兩點,求

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我國南北朝數學家何承天發明的“調日法”是程序化尋求精確分數來表示數值的算法,其理論依據是:設實數x的不足近似值和過剩近似值分別為 (a,b,c,d∈N*),則 是x的更為精確的不足近似值或過剩近似值.我們知道π=3.14159…,若令 <π< ,則第一次用“調日法”后得 是π的更為精確的過剩近似值,即 <π< ,若每次都取最簡分數,那么第四次用“調日法”后可得π的近似分數為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖四棱錐PABCD,底面ABCD為梯形,PD⊥底面ABCD,ABCD,ADCD,ADAB1,BC.

()求證:平面PBD⊥平面PBC;

()HCD上一點滿足2,若直線PC與平面PBD所成的角的正切值為,求二面角HPBC的余弦值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】批次的種燈泡個,對其命進行追蹤調查,將結果列頻率分布表如下,根據壽命將燈泡分成優等品、正品和次品三級,其中大于或等于的燈泡優等品,小于的燈泡次品,余的燈泡是正.

(天)

頻數

頻率

合計

(1)根據頻率分布表中的數據,寫出的值;

(2)某人從這個燈泡中隨機地購買了個,求此燈泡恰好不是次品的概率;

(3)某人從這批燈泡中隨機地購買了個,如果這個燈泡的等級情況恰好與按三個等級分層抽樣所得的結果相同,求的最小值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视