精英家教網 > 高中數學 > 題目詳情
19、已知函數f(x)=(x2-ax+1)ex,(a≥0)
(1)求函數f(x)的單調區間;
(2)若對于任意x∈[0,1],f(x)≥1恒成立,求a取值范圍.
分析:(1)f'(x)=[x2+(2-a)x+(1-a)]ex=(x+1)(x+1-a)ex分類討論:①當a=0時,②當a>0時,先對函數y=f(x)進行求導,然后令導函數大于0(或小于0)求出x的范圍,根據f′(x)>0求得的區間是單調增區間,f′(x)<0求得的區間是單調減區間,即可得到答案.
(2)先對a進行分類討論:①當a=0時,②當a>1時,③當0<a≤1時,分別驗證對于任意x∈[0,1],f(x)≥1是否恒成立,最后綜合即得a取值范圍.
解答:解:(1)f'(x)=[x2+(2-a)x+(1-a)]ex=(x+1)(x+1-a)ex
①當a=0時,f'(x)=(x+1)2ex,所以f'(x)=(x+1)2ex≥0對于任意x∈R成立,所以f(x)在x∈R單調增函數;
②當a>0時,由f'(x)=0解得x1=-1或x2=a-1,且x1<x2,
知f(x)在(-∞,-1)和(a-1,+∞)上增函數;
知f(x)在(-1,a-1)上減函數.
(2)①當a=0時,f(x)在R上增函數,f(x)≥f(0)=1恒成立.
②當a>1時,f(x)在[0,a-1]上減函數,f(x)≤f(0)=1,不恒成立.
③當0<a≤1時,f(x)[0,1]上增函數,f(x)≥f(0)=1恒成立.
綜上所述:0≤a≤1.
點評:此題考查學生會根據導函數的正負判斷函數的單調性,并根據函數的增減性得到函數的最值,解答的關鍵是掌握函數的恒成立問題與最值的關系,是一道中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數f(x)的最小正周期;
(2)若函數y=f(2x+
π
4
)
的圖象關于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)為定義在R上的奇函數,且當x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達式;
(2)若關于x的方程f(x)-a=o有解,求實數a的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調遞增區間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區間(1,3)上總不單調,求實數m的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數列{
1
f(n)
}
的前n項和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)是定義在區間(-1,1)上的奇函數,且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數a的取值范圍是
 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视