【題目】超市某種綠色食品,過去20個月該食品的月市場需求量(單位:
,
)即每月銷售的數據記錄如下:
137 108 114 121 115 135 122 140 128 139
125 140 130 125 105 115 133 124 149 115
對這20個數據按組距10進行分組,并統計整理,繪制了如下尚不完整的統計圖表:
(Ⅰ)寫出,
的值.若視
分布在各區間內的頻率為相應的概率,試計算
;
(Ⅱ)記組月市場需求量數據的平均數與方差分別為
,
,
組月市場需求量數據的平均數與方差分別為
,
,試分別比較
與
,
與
的大;(只需寫出結論)
(Ⅲ)為保證該綠色產品的質量,超市規定該產品僅在每月一日上架銷售,每月最后一日對所有未售出的產品進行下架處理.若超市每售出該綠色食品可獲利潤5元,未售出的食品每
虧損3元,并且超市為下一個月采購了
該綠色食品,求超市下一個月銷售該綠色食品的利潤
的分布列及數學期望
.(以分組的區間中點值代表該組的各個值,并以月市場需求量落入該區間的頻率作為月市場需求量取該組區間中點值的概率)
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和Sn滿足Sn= n2+
n(n∈N*),數列{bn}是首項為4的正項等比數列,且2b2 , b3﹣3,b2+2成等差數列. (Ⅰ)求數列{an},{bn}的通項公式;
(Ⅱ)令cn=anbn(n∈N*),求數列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l經過直線l1:2x﹣y﹣1=0與直線l2:x+2y﹣3=0的交點P,且與直線l3:x﹣y+1=0垂直.
(1)求直線l的方程;
(2)若直線l與圓C:(x﹣a)2+y2=8相交于P,Q兩點,且 ,求a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓O:x2+y2=2,直線l:y=kx﹣2.
(1)若直線l與圓O交于不同的兩點A,B,且 ,求k的值;
(2)若 ,P是直線l上的動點,過P作圓O的兩條切線PC,PD,切點分別為C,D,求證:直線CD過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某高科技企業生產產品A和產品B需要甲、乙兩種新型材料.生產一件產品A需要甲材料1.5kg,乙材料1kg,用5個工時;生產一件產品B需要甲材料0.5kg,乙材料0.3kg,用3個工時,生產一件產品A的利潤為2100元,生產一件產品B的利潤為900元.該企業現有甲材料150kg,乙材料90kg,則在不超過600個工時的條件下,生產產品A、產品B的利潤之和的最大值為元.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x (m∈Z)為偶函數,且在(0,+∞)上為增函數.
(1)求m的值,并確定f(x)的解析式;
(2)若函數g(x)=loga(f(x)﹣ax+2)在區間(1,+∞)上恒為正值,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校為了支持生物課程基地研究植物生長,計劃利用學?盏亟ㄔ煲婚g室內面積為900m2的矩形溫室,在溫室內劃出三塊全等的矩形區域,分別種植三種植物,相鄰矩形區域之間間隔1m,三塊矩形區域的前、后與內墻各保留 1m 寬的通道,左、右兩塊矩形區域分別與相鄰的左右內墻保留 3m 寬的通道,如圖.設矩形溫室的室內長為x(m),三塊種植植物的矩形區域的總面積為S(m2).
(1)求S關于x的函數關系式;
(2)求S的最大值,及此時長X的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com