【題目】已知橢圓的兩個焦點分別為
、
,
,點
在橢圓上,且
的周長為
(Ⅰ)求橢圓的方程;
(Ⅱ)若點的坐標為
,不過原點
的直線
與橢圓
相交于
,
兩點,設線段
的中點為
,點
到直線
的距離為
,且
,
,
三點共線,求
的最大值.
【答案】(Ⅰ);(Ⅱ)
.
【解析】
(Ⅰ)根據焦距和焦點三角形周長可求得,利用
求得
,從而可得橢圓的方程;(Ⅱ)當直線
斜率不存在時,可判斷出
,
,
三點不共線,不符合題意;所以可假設出直線方程,與橢圓方程聯立,利用韋達定理表示出
和
;由三點共線得到斜率相等關系,從而可求得
;利用弦長公式和點到直線距離公式求得
和
,代入可整理出:
,可知當
時取最大值.
(Ⅰ)由題意得:,
解得:,
橢圓
的方程為
(Ⅱ)設,
當直線與
軸垂直時,由橢圓的對稱性可知,點
在
軸上,且與
點不重合
顯然,
,
三點不共線,不符合題設條件
故可設直線的方程
由,消去
整理得:
……①
則
,
點
的坐標為
,
,
三點共線
此時方程①為:,則
則,
又
當
時,
的最大值為
科目:高中數學 來源: 題型:
【題目】已知線段AB的端點B的坐標是(4,2),端點A在圓C:(x+2)2+y2=16上運動.
(1)求線段AB的中點的軌跡方程H.
(2)判斷(1)中軌跡H與圓C的位置關系.
(3)過點P(3,2)作兩條相互垂直的直線MN,EF,分別交(1)中軌跡H于M,N和E,F,求四邊形MNFE面積的最大值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
,直線
的極坐標方程為
.
(1)求曲線與直線
的直角坐標方程.
(2)直線與
軸的交點為
,與曲線
的交點為
,
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著手機的發展,“微信”逐漸成為人們支付購物的一種形式.某機構對“使用微信支付”的態度進行調查,隨機抽取了50人,他們年齡的頻數分布及對“使用微信支付”贊成人數如下表.
年齡 (單位:歲) |
|
|
|
|
|
|
頻數 | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數 | 5 | 10 | 12 | 7 | 2 | 1 |
(Ⅰ)若以“年齡45歲為分界點”,由以上統計數據完成下面列聯表,并判斷是否有99%的把握認為“使用微信支付”的態度與人的年齡有關;
年齡不低于45歲的人數 | 年齡低于45歲的人數 | 合計 | |
贊成 | |||
不贊成 | |||
合計 |
(Ⅱ)若從年齡在的被調查人中按照贊成與不贊成分層抽樣,抽取5人進行追蹤調查,在5人中抽取3人做專訪,求3人中不贊成使用微信支付的人數的分布列和期望值.
參考數據:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的兩個焦點分別為
、
,
,點
在橢圓上,且
的周長為
(Ⅰ)求橢圓的方程;
(Ⅱ)若點的坐標為
,不過原點
的直線
與橢圓
相交于
,
兩點,設線段
的中點為
,點
到直線
的距離為
,且
,
,
三點共線,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,已知橢圓:
的長軸為
,過點
的直線
與
軸垂直,橢圓
上一點與橢圓
的長軸的兩個端點構成的三角形的最大面積為2,且橢圓的離心率為
.
(1)求橢圓的標準方程;
(2) 設是橢圓
上異于
,
的任意一點,連接
并延長交直線
于點
,
點為
的中點,試判斷直線
與橢圓
的位置關系,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校為了推動數學教學方法的改革,學校將高一年級部分生源情況基本相同的學生分成甲乙兩個班,每班各40人,甲班按原有模式教學,乙班實施教學方法改革.經過一年的教學實驗,將甲乙兩個班學生一年來的數學成績取平均數,兩個班學生的平均成績均在,按照區間
,
,
進行分組,繪制成如下頻率分布直方圖,規定不低于80分(百分制)為優秀.
(1)完成表格,并判斷是否有90%以上的把握認為“數學成績優秀與教學改革有關”;
甲班 | 乙班 | 總計 | |
大于等于80分的人數 | |||
小于80分的人數 | |||
總計 |
(2)從乙班分數段中,按分層抽樣隨機抽取7名學生座談,從中選三位同學發言,記來自
發言的人數為隨機變量
,求
的分布列和期望.附:
,
0.10 | 0.05 | 0.025 | |
2.706 | 3.841 | 5.024 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com