19.((本小題滿分12分)
已知動點P與雙曲線的兩個焦點F1、F2的距離之和為定值2a(a>),且cos∠F1PF2的最小值為.
(1)求動點P的軌跡方程;
(2)若已知D(0,3),M、N在動點P的軌跡上,且=λ,求實數λ的取值范圍.
,λ的取值范圍是[,5]
解(1)∵且|PF1|+|PF2|=2a>|F1F2| (a>)
∴P的軌跡為以F1、F2為焦點的橢圓E,可設E: (其中b2=a2-5)
在△PF1F2中,由余弦定理得
又
∴當且僅當| PF1 |=| PF2 |時,| PF1 |·| PF2 |取最大值,此時cos∠F1PF2取最小值
令=a2=9 ∵c= ∴b2=4故所求P的軌跡方程為
(2)設N(s,t),M(x,y),則由,可得(x,y-3)=λ(s,t-3)
∴x=λs,y=3+λ(t-3)
而M、N在動點P的軌跡上,故且
消去S得解得
又| t |≤2 ∴,解得, 故λ的取值范圍是[,5]
科目:高中數學 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數學 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產業建設工程三類,這三類工程所含項目的個數分別占總數的、
、
.現有3名工人獨立地從中任選一個項目參與建設.求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分12分)
某民營企業生產A,B兩種產品,根據市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產品的利潤表示為投資的函數,并寫出它們的函數關系式.(2)該企業已籌集到10萬元資金,并全部投入到A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com