精英家教網 > 高中數學 > 題目詳情

【題目】已知兩定點,,點是平面內的動點,且,記的軌跡是.

1)求曲線的方程;

2)過點引直線交曲線兩點,點關于軸的對稱點為,證明直線過定點.

【答案】12)證明見解析

【解析】

1)設,根據向量的坐標運算并結合,代入化簡即可求得的軌跡是.

2)當斜率為0時,直線即為軸,此時定點一定在軸上.當斜率不為0時,設直線方程與,,聯立直線與橢圓方程,結合韋達定理表示出,進而表示出直線.,化簡即可求得為定值,即可得所過定點的坐標.

,則,,,,

所以,即.

故點,這兩點的距離之和為4

,

由橢圓定義得曲線為橢圓且,

所以曲線.

2)若直線斜率為0,則直線即為軸,此時定點一定在軸上.

若直線斜率不為0,則可設直線,設,

所以

故直線,

,

可得

所以直線恒過.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知的直角頂點軸上,點為斜邊的中點,且平行于軸.

(Ⅰ)求點的軌跡方程;

(Ⅱ)設點的軌跡為曲線,直線的另一個交點為.以為直徑的圓交軸于即此圓的圓心為,的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】執行如圖所示的程序框圖(其中為虛數單位),則輸出的值是(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知.

1)若恒成立,求實數a的取值范圍;

2)若關于x的方程有兩個不同的解,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】知函數

1)當時,求的單調區間;

2)設函數,若的唯一極值點,求

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于函數fx)給出定義:設fx)是函數yfx)的導數,fx)是函數fx)的導數,若方程fx)=0有實數解x0,則稱點(x0,fx0))為函數yfx)的拐點.某同學經過探究發現:任何一個三次函數fx)=ax3+bx2+cx+da≠0)都有拐點;任何一個三次函數都有對稱中心,且拐點就是對稱中心.給定函數,請你根據上面探究結果,計算f+f+f+……+f)=_____

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,若方程有五個不同的根,則實數的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數fx,gx1

1)若fa)=2,求實數a的值;

2)判斷fx)的單調性,并證明;

3)設函數hx)=gxx0),若h2t+mht+40對任意的正實數t恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,,且的圖象有一個斜率為1的公切線(為自然對數的底數).

1)求;

2)設函數,討論函數的零點個數.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视