【題目】某省電視臺為了解該省衛視一檔成語類節目的收視情況,抽查東西兩部各個城市,得到觀看該節目的人數(單位:千人),如莖葉圖所示,其中一個數字被污損.
(1)求東部各城市觀看該節目觀眾平均人數超過西部各城市觀看該節目觀眾平均人數的概率;
(2)隨著節目的播出,極大激發了觀眾對成語知識學習積累的熱情,從中獲益匪淺.現從觀看該節目的觀眾中隨機統計了位觀眾的周均學習成語知識的時間(單位:小時)與年齡(單位:歲),并制作了對照表(如下表所示),
年齡x(歲) | ||||
周均學習成語知識時間y(小時) |
由表中數據,試求線性回歸方程,并預測年齡為歲觀眾周均學習成語知識時間.
參考公式:.
科目:高中數學 來源: 題型:
【題目】已知指數函數
(1)函數過定點
,求
的值;
(2)當時,求函數
的最小值
;
(3)是否存在實數,使得(2)中關于
的函數
的定義域為
時,值域為
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 的定義域為
,若對于任意的
,
,都有
,且當
時,有
.
(1)證明: 為奇函數;
(2)判斷 在
上的單調性,并證明;
(3)設 ,若
(
且
)對
恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【選做題】本題包括A、B、C、D四小題,請選定其中兩小題,并在相應的答題區域內作答.若多做,則按作答的前兩小題評分.解答時應寫出文字說明、證明過程或演算步驟.
A.[選修4-1:幾何證明選講]
如圖, 分別與圓
相切于點
,
,
經過圓心
,且
,求證:
.
B.[選修4-2:矩陣與變換]
在平面直角坐標系中,已知點,
,
,
,先將正方形
繞原點
逆時針旋轉
,再將所得圖形的縱坐標壓縮為原來的一半、橫坐標不變,求連續兩次變換所對應的矩陣
.
C.[選修4-4:坐標系與參數方程]
在平面直角坐標系中,已知曲線
的參數方程為
(
為參數).現以
為極點,
軸的正半軸為極軸,建立極坐標系,求曲線
的極坐標方程.
D.[選修4-5:不等式選講]
已知為互不相等的正實數,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某電子公司開發一種智能手機的配件,每個配件的成本是15元,銷售價是20元,月平均銷售件,通過改進工藝,每個配件的成本不變,質量和技術含金量提高,市場分析的結果表明,如果每個配件的銷售價提高的百分率為
,那么月平均銷售量減少的百分率為
,記改進工藝后電子公司銷售該配件的月平均利潤是
(元).
(1)寫出與
的函數關系式;
(2)改進工藝后,試確定該智能手機配件的售價,使電子公司銷售該配件的月平均利潤最大.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com