精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=bax(其中a,b為常量,且a>0,a≠1)的圖象經過點A(1,6),B(3,24).
(1)求f(x)的表達式;
(2)設函數g(x)=f(x)﹣2×3x , 求g(x+1)>g(x)時x的取值范圍.

【答案】
(1)解:把A(1,6),B(3,24)代入f(x)=bax,得

,結合a>0且a≠1,解得: ,

∴f(x)=32x


(2)解:由(1)得:g(x)=32x﹣2×3x,

g(x+1)=32x+1﹣2×3x+1,

由g(x+1)>g(x)得:

32x+1﹣23x+1﹣32x+23x>0,

∴32x﹣42x>0,

解得:x<


【解析】(1)根據函數f(x)=bax(其中a,b為常量,且a>0,a≠1)的圖象經過點A(1,6),B(3,24),把A(1,6),B(3,24)代入f(x)=bax , 解此方程組即可求得a,b,的值,從而求得f(x);(2)求出g(x+1),g(x),問題轉化為32x﹣42x>0,解出即可.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知⊙ 與⊙ ,以, 分別為左右焦點的橢圓 經過兩圓的交點.

(Ⅰ)求橢圓的方程;

(Ⅱ), 分別為橢圓的左右頂點, , 是橢圓上非頂點的三點,若,試問的面積是否為定值?若是,求出這個定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列幾個命題
①奇函數的圖象一定通過原點
②函數y= 是偶函數,但不是奇函數
③函數f(x)=ax1+3的圖象一定過定點P,則P點的坐標是(1,4)
④若f(x+1)為偶函數,則有f(x+1)=f(﹣x﹣1)
⑤若函數f(x)= 在R上的增函數,則實數a的取值范圍為[4,8)
其中正確的命題序號為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某科研小組研究發現:一棵水果樹的產量(單位:百千克)與肥料費用(單位:百元)滿足如下關系: .此外,還需要投入其它成本(如施肥的人工費等)百元.已知這種水果的市場售價為16元/千克(即16百元/百千克),且市場需求始終供不應求.記該棵水果樹獲得的利潤為(單位:百元).

(1)求的函數關系式;

當投入的肥料費用為多少時,該水果樹獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}滿足a11, ,其中nN*

1,求證:數列{bn}是等差數列,并求出{an}的通項公式.

2,數列{cncn+2}的前n項和為Tn是否存在正整數m,使得對于nN*,恒成立?若存在,求出m的最小值;若不存在,請說明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四邊形都是邊長為的正方形,點的中點, 平面.

(1)求證 平面;

(2)求證:平面平面

(3)求平面與平面所成銳二面角的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線 的焦點為,圓 .直線與拋物線交于點兩點,與圓切于點.

(1)當切點的坐標為時,求直線及圓的方程;

(2)當時,證明: 是定值,并求出該定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】濰坊文化藝術中心的觀光塔是濰坊市的標志性建筑,某班同學準備測量觀光塔的高度單位:米),如圖所示,垂直放置的標桿的高度米,已知, .

1)該班同學測得一組數據: ,請據此算出的值;

2該班同學分析若干測得的數據后,發現適當調整標桿到觀光塔的距離單位:米),使的差較大,可以提高測量精確度,若觀光塔高度為136米,問為多大時, 的值最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(Ⅰ)當時,求曲線在點處的切線方程;

(Ⅱ)證明:對于, 在區間上有極小值,且極小值大于0.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视