【題目】某城市的甲區、乙區分別對6個企業進行評估,綜合得分情況如莖葉圖所示.
(1)根據莖葉圖,分別求甲、乙兩區引進企業得分的平均值;
(2)規定85分以上(含85分)為優秀企業,若從甲、乙兩個區準備引進的優秀企業中各隨機選取一個,求這兩個企業得分的差的絕對值不超過5分的概率.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線
的參數方程為
,其中
為參數,
.在以坐標原點
為極點,軸的正半軸為極軸的極坐標系中,點
的極坐標為
,直線
的極坐標方程為
.
(1)求直線的直角坐標方程與曲線
的普通方程;
(2)若是曲線
上的動點,
為線段
的中點.求點
到直線
的距離的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2013年華人數學家張益唐證明了孿生素數猜想的一個弱化形式。孿生素數猜想是希爾伯特在1900年提出的23個問題之一,可以這樣描述:存在無窮多個素數p,使得p+2是素數,素數對(p,p+2)稱為孿生素數.在不超過30的素數中,隨機選取兩個不同的數,其中能夠組成孿生素數的概率是
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】海洋藍洞是地球罕見的自然地理現象,被喻為“地球留給人類保留宇宙秘密的最后遺產”,我國擁有世界上最深的海洋藍洞,若要測量如圖所示的藍洞的口徑,
兩點間的距離,現在珊瑚群島上取兩點
,
,測得
,
,
,
,則
,
兩點的距離為___.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某鮮花店每天制作、
兩種鮮花共
束,每束鮮花的成本為
元,售價
元,如果當天賣不完,剩下的鮮花作廢品處理.該鮮花店發現這兩種鮮花每天都有剩余,為此整理了過往100天這兩種鮮花的日銷量(單位:束),得到如下統計數據:
| 48 | 49 | 50 | 51 |
天數 | 25 | 35 | 20 | 20 |
| 48 | 49 | 50 | 51 |
天數 | 40 | 35 | 15 | 10 |
以這100天記錄的各銷量的頻率作為各銷量的概率,假設這兩種鮮花的日銷量相互獨立.
(1)記該店這兩種鮮花每日的總銷量為束,求
的分布列.
(2)鮮花店為了減少浪費,提升利潤,決定調查每天制作鮮花的量束.以銷售這兩種鮮花的日總利潤的期望值為決策依據,在每天所制鮮花能全部賣完與
之中選其一,應選哪個?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,四邊形
為梯形,
,且
,
是邊長為2的正三角形,頂點
在
上的射影為點
,且
,
,
.
(1)證明:平面平面
;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】十九大以來,某貧困地區扶貧辦積極貫徹落實國家精準扶貧的政策要求,帶領廣大農村地區人民群眾脫貧奔小康.經過不懈的奮力拼搏,新農村建設取得巨大進步,農民年收入也逐年增加.為了制定提升農民年收入、實現2020年脫貧的工作計劃,該地扶貧辦統計了2019年50位農民的年收入并制成如下頻率分布直方圖:
(1)根據頻率分布直方圖,估計50位農民的年平均收入元(單位:千元)(同一組數據用該組數據區間的中點值表示);
(2)由頻率分布直方圖,可以認為該貧困地區農民年收入X服從正態分布,其中
近似為年平均收入
,
近似為樣本方差
,經計算得
,利用該正態分布,求:
(i)在扶貧攻堅工作中,若使該地區約有占總農民人數的84.14%的農民的年收入高于扶貧辦制定的最低年收入標準,則最低年收入大約為多少千元?
(ii)為了調研“精準扶貧,不落一人”的政策要求落實情況,扶貧辦隨機走訪了1000位農民.若每位農民的年收入互相獨立,問:這1000位農民中的年收入不少于12.14千元的人數最有可能是多少?
附參考數據:,若隨機變量X服從正態分布
,則
,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在橢圓
上,
為右焦點,
軸,
為橢圓上的四個動點,且
,
交于原點
.
(1)判斷直線與橢圓的位置關系;
(2設,
滿足
,判斷
的值是否為定值,若是,請求出此定值,并求出四邊形
面積的最大值,否則說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com