【題目】已知焦點在x軸上的橢圓C1的長軸長為8,短半軸為2,拋物線C2的頂點在原點且焦點為橢圓C1的右焦點.
(1)求拋物線C2的標準方程;
(2)過(1,0)的兩條相互垂直的直線與拋物線C2有四個交點,求這四個點圍成四邊形的面積的最小值.
【答案】(1)y2=8x;(2)96.
【解析】
(1)由已知直接可求出橢圓的,運用橢圓
之間的關系求出
,最后可求出拋物線C2的標準方程;
(2) 由題意易得兩條直線的斜率存在且不為0,設其中一條直線l1的斜率為k,設出直線l1方程與拋物線方程聯立,利用一元二次方程根與系數關系,可以求出弦長,同理求出直線l2與拋物線相交時,弦長的表達式,最后求出面積表達式,利用基本不等式可以求出四邊形的面積的最小值.
(1)設橢圓半焦距為c(c>0),由題意得c.
設拋物線C2的標準方程為y2=2px(p>0),則,∴p=4,
∴拋物線C2的標準方程為y2=8x;
(2)由題意易得兩條直線的斜率存在且不為0,設其中一條直線l1的斜率為k,直線l1方程為y=k(x﹣1),則另一條直線l2的方程為y(x﹣1),
聯立得k2x2﹣(2k2+8)x+k2=0,△=32k2+64>0,設直線l1與拋物線C2的交點為A,B,
則則|AB||x2﹣x1|
,
同理設直線l2與拋物線C2的交點為C,D,
則|CD|4
.
∴四邊形的面積S|AB||CD|
4
.
,
令t2,則t≥4(當且僅當k=±1時等號成立),
.
∴當兩直線的斜率分別為1和﹣1時,四邊形的面積最小,最小值為96.
科目:高中數學 來源: 題型:
【題目】下面幾種推理過程是演繹推理的是( 。
A. 某校高三有8個班,1班有51人,2班有53人,3班有52人,由此推測各班人數都超過50人
B. 由三角形的性質,推測空間四面體的性質
C. 平行四邊形的對角線互相平分,菱形是平行四邊形,所以菱形的對角線互相平分
D. 在數列中,
,可得
,由此歸納出
的通項公式
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】改革開放以來,人們的支付方式發生了巨大轉變.近年來,移動支付已成為主要支付方式之一.為了解某校學生上個月A,B兩種移動支付方式的使用情況,從全校所有的1000名學生中隨機抽取了100人,發現樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學生的支付金額分布情況如下:
支付方式 | 不大于2000元 | 大于2000元 |
僅使用A | 27人 | 3人 |
僅使用B | 24人 | 1人 |
(Ⅰ)估計該校學生中上個月A,B兩種支付方式都使用的人數;
(Ⅱ)從樣本僅使用B的學生中隨機抽取1人,求該學生上個月支付金額大于2000元的概率;
(Ⅲ)已知上個月樣本學生的支付方式在本月沒有變化.現從樣本僅使用B的學生中隨機抽查1人,發現他本月的支付金額大于2000元.結合(Ⅱ)的結果,能否認為樣本僅使用B的學生中本月支付金額大于2000元的人數有變化?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,橢圓C:的焦點為F1(–1、0),
F2(1,0).過F2作x軸的垂線l,在x軸的上方,l與圓F2:交于點A,與橢圓C交于點D.連結AF1并延長交圓F2于點B,連結BF2交橢圓C于點E,連結DF1.已知DF1=
.
(1)求橢圓C的標準方程;
(2)求點E的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,拋物線與
軸所圍成的區域是一塊等待開墾的土地,現計劃在該區域內圍出一塊矩形地塊ABCD作為工業用地,其中A、B在拋物線上,C、D在
軸上.已知工業用地每單位面積價值為
元
,其它的三個邊角地塊每單位面積價值
元.
(1)求等待開墾土地的面積;
(2)如何確定點C的位置,才能使得整塊土地總價值最大.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我們稱滿足以下兩個條件的有窮數列為
階“期待數列”;①
;②
.
(1)若數列的通項公式是
,試判斷數列
是否為2014階“期待數列”,并說明理由;
(2)若等比數列為
階“期待數列”,求公比
及數列
的通項公式;
(3)若一個等差數列既是(
)階“期待數列”又是遞增數列,求該數列的通項公式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面直角坐標系中,已知橢圓
,拋物線
的焦點
是
的一個頂點,設
是
上的動點,且位于第一象限,記
在點
處的切線為
.
(1)求的值和切線
的方程(用
表示)
(2)設與
交于不同的兩點
,線段
的中點為
,直線
與過
且垂直于
軸的直線交于點
.
(i)求證:點在定直線上;
(ii)設與
軸交于點
,記
的面積為
,
的面積為
,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知圓心在
軸上,半徑為2的圓
位于
軸右側,且與直線
相切.
(1)求圓的方程;
(2)在圓上,是否存在點
,使得直線
與圓
相交于不同的兩點
,且
的面積最大?若存在,求出點
的坐標及對應的
的面積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱中,
平面
,
為
邊上一點,
,
.
(1)證明:平面平面
.
(2)若,試問:
是否與平面
平行?若平行,求三棱錐
的體積;若不平行,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com