精英家教網 > 高中數學 > 題目詳情
若-1≤x≤2,1≤y≤3,則x-2y的最大值是
0
0
分析:設z=x-2y,作出不等式組對應的平面區域,利用目標函數的幾何意義,進行求最值即可.或者直接使用不等式的性質進行求解.
解答:解:方法1:設z=x-2y,則y=
1
2
x-
z
2
,
作出不等式組對應的平面區域如圖(陰影部分):
平移直線y=
1
2
x-
z
2

由圖象可知當直線y=
1
2
x-
z
2
,過點C(2,1)時,直線y=
1
2
x-
z
2
的截距最小,此時z最大,
代入目標函數z=x-2y,得z=2-2=0.
∴z=x-2y的最大值是0.
方法2.∵1≤y≤3,
∴-3≤-y≤-1,-6≤-2y≤-2,
∵-1≤x≤2,
∴根據不等式的性質可知-6-1≤x+(-2y)≤-2+2,
即-7≤x-2y≤0,
∴x-2y的最大值是0.
故答案為:0.
點評:本題主要考查線性規劃的基本應用,利用目標函數的幾何意義是解決問題的關鍵,利用數形結合是解決問題的基本方法.本題也可以直接使用不等式的性質進行求解.
練習冊系列答案
相關習題

科目:高中數學 來源:2012-2013學年山東省泰安市新泰市新汶中學高三(上)9月月考數學試卷(理科)(解析版) 題型:選擇題

對任意實數x,若不等式|x+2|+|x+1|>k恒成立,則實數k的取值范圍是( )
A.k>1
B.k=1
C..k≤1
D..k<1

查看答案和解析>>

科目:高中數學 來源:2009-2010學年湖北省武漢市外國語學校高二(上)期末數學試卷(文科)(解析版) 題型:選擇題

對任意實數x,若不等式|x+2|+|x+1|>k恒成立,則實數k的取值范圍是( )
A.k>1
B.k=1
C..k≤1
D..k<1

查看答案和解析>>

科目:高中數學 來源:2010-2011學年四川省成都37中高考一輪復習數學專項訓練:集合和簡易邏輯(解析版) 題型:選擇題

對任意實數x,若不等式|x+2|+|x+1|>k恒成立,則實數k的取值范圍是( )
A.k>1
B.k=1
C..k≤1
D..k<1

查看答案和解析>>

科目:高中數學 來源:2011年高三數學復習(第5章 不等式):5.9 無理不等式解法及含絕對值不等式解法(解析版) 題型:選擇題

若不等式|x-2|+|x-1|>a的解集是R,則實數a應滿足( )
A.0≤a<1
B.a<1
C.a≥1
D.a>1

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视