【題目】已知函數.
(Ⅰ)若f(1)=0,求函數f(x)的最大值;
(Ⅱ)令,討論函數g(x)的單調區間;
(Ⅲ)若a=2,正實數x1,x2滿足證明
【答案】(1)f(x)的最大值為f(1)=0.(2)見解析(3)見解析
【解析】試題分析:(Ⅰ)代入求出值,利用導數求出函數的極值,進而判斷最值;(Ⅱ)求出
,求出導函數,分別對參數
分類討論,確定導函數的正負,得出函數的單調性;(Ⅲ)整理方程
,觀察題的特點,變形得
,故只需求解右式的范圍即可,利用構造函數,求導的方法求出右式的最小值.
試題解析:(Ⅰ)因為,所以a=-2,此時f(x)=lnx-x2+x,
f'(x)=-2x+1,
由f'(x)=0,得x=1,
∴f(x)在(0,1)上單調遞增,在(1,+∞)上單調遞減,
故當x=1時函數有極大值,也是最大值,所以f(x)的最大值為f(1)=0.
(Ⅱ)g(x)=f(x)-ax2-ax+1,
∴g(x)=lnx-ax2-ax+x+1
,
當a=0時,g'(x)>0,g(x)單調遞增;
當a>0時,x∈(0,)時,g'(x)>0,g(x)單調遞增;x∈(
,+∞)時,g'(x)<0,g(x)單調遞減;
當a<0時,g'(x)>0,g(x)單調遞增;
(Ⅲ)當a=2時,f(x)=lnx+x2+x,x>0,.
由f(x1)+f(x2)+x1x2=0,即
lnx1+x12+x1+lnx2+x22+x2+x2x1=0.
從而(x1+x2)2+(x1+x2)=x1x2-ln(x1x2),.
令t=x2x1,則由φ(t)=t-lnt得,φ'(t)=.
可知,φ(t)在區間(0,1)上單調遞減,在區間(1,+∞)上單調遞增.所以φ(t)≥1,
所以(x1+x2)2+(x1+x2)≥1,正實數x1,x2,
∴.
科目:高中數學 來源: 題型:
【題目】有2名老師,3名男生,3名女生站成一排照相留念,在下列情況中,各有多少種不同站法?
(1)3名男生必須站在一起;
(2)2名老師不能相鄰;
(3)若3名女生身高都不等,從左到右女生必須由高到矮的順序站.(最終結果用數字表示)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,函數
.
(1)若函數,
的最小值為-16,求實數
的值;
(2)若函數在區間
上是單調減函數,求實數
的取值范圍;
(3)當時,不等式
的解集為
,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2017屆高三第二次湖北八校文數試卷第16題)祖暅(公元前5~6世紀)是我國齊梁時代的數學家,是祖沖之的兒子.他提出了一條原理:“冪勢既同,則積不容異.”這里的“冪”指水平截面的面積,“勢”指高.這句話的意思是:兩個等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個幾何體體積相等.設由橢圓所圍成的平面圖形繞
軸旋轉一周后,得一橄欖狀的幾何體
(如圖)(稱為橢球體),課本中介紹了應用祖暅原理求球體體積公式的做法,請類比此法,求出橢球體體積,其體積等于______ .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某知名品牌汽車深受消費者喜愛,但價格昂貴。某汽車經銷商退出三種分期付款方式銷售該品牌汽車,并對近期100位采用上述分期付款的客戶進行統計分析,得到如下的柱狀圖。已知從
三種分期付款銷售中,該經銷商每銷售此品牌汽車1輛所獲得的利潤分別是1萬元,2萬元,3萬元,F甲乙兩人從該汽車經銷商處,采用上述分期付款方式各購買此品牌汽車一輛。以這100 位客戶所采用的分期付款方式的頻率代替1位客戶采用相應分期付款方式的概率。
(Ⅰ)求甲乙兩人采用不同分期付款方式的概率;
(Ⅱ)記(單位:萬元)為該汽車經銷商從甲乙兩人購車中所獲得的利潤,求
的分布列和期望。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某項考試按科目A、科目B依次進行,只有當科目A成績合格時,才可繼續參加科目B的考試.已知每個科目只允許有一次補考機會,兩個科目成績均合格方可獲得證書.現某人參加這項考試,科目A每次考試成績合格的概率均為,科目B每次考試成績合格的概率均為
.假設各次考試成績合格與否均互不影響.
(1)求他不需要補考就可獲得證書的概率;
(2)在這項考試過程中,假設他不放棄所有的考試機會,記他參加考試的次數為,求
的分布列及數學期望E
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com