【題目】已知函數,其中
為自然對數的底數.
(1)當時,討論函數
的單調性;
(2)當時,求證:對任意的
.
科目:高中數學 來源: 題型:
【題目】已知點是橢圓
上任一點,點
到直線
的距離為
,到點
的距離為
,且
.直線
與橢圓
交于不同兩點
(
都在
軸上方),且
.
(1)求橢圓的方程;
(2)當為橢圓與
軸正半軸的交點時,求直線
方程;
(3)對于動直線,是否存在一個定點,無論
如何變化,直線
總經過此定點?若存在,求出該定點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【選修4-4:坐標系與參數方程】
已知圓的極坐標方程為
,直線
的參數方程為
(
為參數).若直線
與圓
相交于不同的兩點
.
(1)寫出圓的直角坐標方程,并求圓心的坐標與半徑;
(2)若弦長,求直線
的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數,其中
,若
是
的三條邊長,則下列結論中正確的是( )
①存在,使
、
、
不能構成一個三角形的三條邊
②對一切,都有
③若為鈍角三角形,則存在
,使
A. ①② B. ①③ C. ②③ D. ①②③
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】4個男生,3個女生站成一排.(必須寫出算式再算出結果才得分)
(Ⅰ)3個女生必須排在一起,有多少種不同的排法?
(Ⅱ)任何兩個女生彼此不相鄰,有多少種不同的排法?
(Ⅲ)甲乙二人之間恰好有三個人,有多少種不同的排法?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在極坐標系中,圓的極坐標方程為
,若以極點
為原點,極軸所在的直線為
軸建立平面直角坐標系
(1)求圓的參數方程;
(2)在直角坐標系中,點是圓
上的動點,試求
的最大值,并求出此時點
的直角坐標;
(3)已知為參數),曲線
為參數),若版曲線
上各點恒坐標壓縮為原來的
倍,縱坐標壓縮為原來的
倍,得到曲線
,設點
是曲線
上的一個動點,求它到直線
距離的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】長為的線段
的兩個端點
和
分別在
軸和
軸上滑動.
(1)求線段的中點的軌跡
的方程;
(2)當時,曲線
與
軸交于
兩點,點
在線段
上,過
作
軸的垂線交曲線
于不同的兩點
,點
在線段
上,滿足
與
的斜率之積為-2,試求
與
的面積之比.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著手機的發展,“微信”越來越成為人們交流的一種方式.某機構對“使用微信交流”的態度進行調查,隨機抽取了50人,他們年齡的頻數分布及對“使用微信交流”贊成人數如下表.
年齡(單位:歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
頻數 | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數 | 5 | 10 | 12 | 7 | 2 | 1 |
(Ⅰ)若以“年齡45歲為分界點”,由以上統計數據完成下面列聯表,并判斷是否有99%的把握認為“使用微信交流”的態度與人的年齡有關;
年齡不低于45歲的人數 | 年齡低于45歲的人數 | 合計 | |
贊成 | |||
不贊成 | |||
合計 |
(Ⅱ)若從年齡在[25,35)和[55,65)的被調查人中按照分層抽樣的方法選取6人進行追蹤調查,并給予其中3人“紅包”獎勵,求3人中至少有1人年齡在[55,65)的概率.
參考數據如下:
附臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
的觀測值:
(其中
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓,離心率為
,兩焦點分別為
,過
的直線交橢圓
于
兩點,且
的周長為8.
(1)求橢圓的方程;
(2)過點作圓
的切線
交橢圓
于
兩點,求弦長
的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com