分析:根據題中格點的定義,找出圓x2+y2=5上所有的格點,發現共8個,然后分兩種情況考慮:
當直線y=kx+b與圓相切時,切點恰為這8個格點時,這樣的直線有8條;
當直線與圓相交時,相當于從8個點中找2個點,利用排列組合公式求出直線的條數,但是注意到y=kx+b的斜率要存在,故平行與y軸的直線不滿足題意,找出與y軸平行的直線;
綜上,用相切時直線的條數+相交時直線的條數-與y軸平行的直線條數,求出的結果即為滿足題意的所有直線的條數.
解:由題意可知:圓x2+y2=5上的格點有且只有八個:
(1,2),(2,1),(-1,2),(-2,1),(-1,-2),(-2,-1),(1,-2),(2,-1),
分兩種情況考慮:
當直線與圓相切,且切點為這8個格點時,這樣的直線有8條;
當直線與圓相交且交點為格點時,這樣的直線有C82=28(條),注意到與y軸平行的直線有4條,
綜上,滿足條件的直線有8+28-4=32(條),
故選C.