【題目】等差數列中,
,
,其前
項和為
.
(1)求數列的通項公式;
(2)設數列滿足
,其前
項和為為
,求證:
.
科目:高中數學 來源: 題型:
【題目】已知:直線,一個圓與
軸正半軸與
軸正半軸都相切,且圓心
到直線
的距離為
.
()求圓的方程.
()
是直線
上的動點,
,
是圓的兩條切線,
,
分別為切點,求四邊形
的面積的最小值.
()圓與
軸交點記作
,過
作一直線
與圓交于
,
兩點,
中點為
,求
最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a∈R,f(x)=log2(1+ax).
(1)求f(x2)的值域;
(2)若關于x的方程f(x)-log2[(a-4)x2+(2a-5)x]=0的解集恰有一個元素,求實數a的取值范圍;
(3)當a>0時,對任意的t∈(,+∞),f(x2)在[t,t+1]的最大值與最小值的差不超過4,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)與g(x)是定義在同一區間[a,b]上的兩個函數,若函數y=f(x)-g(x)在x∈[a,b]上有兩個不同的零點,則稱f(x)和g(x)在[a,b]上是“關聯函數”,區間[a,b]稱為“關聯區間”.若f(x)=x2-3x+4與g(x)=2x+m在[0,3]上是“關聯函數”,則m的取值范圍是 ( ).
A. B.[-1,0] C.(-∞,-2] D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某民營企業生產兩種產品,根據市場調查與預測,
產品的利潤與投資成正比,其關系如圖甲,
產品的利潤與投資的算術平方根成正比,其關系如圖乙(注:利潤與投資單位:萬元).
(1)分別將兩種產品的利潤表示為投資
(萬元)的函數關系式;
(2)該企業已籌集到10萬元資金,并全部投入兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業獲得最大利潤,其最大利潤為多少萬元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】高二年級有甲、乙、丙三個班參加社會實踐活動,高二年級老師要分到各個班級帶隊,其中男女老師各一半,每次任選兩個老師,將其中一個老師分到甲班,如果這個老師是男老師,就將另一個老師分到乙班,否則就分到丙班,重復上述過程,直到所有老師都分到班級,則
A. 乙班女老師不多于丙班女老師 B. 乙班男老師不多于丙班男老師
C. 乙班男老師與丙班女老師一樣多 D. 乙班女老師與丙班男老師一樣多
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4﹣1:幾何證明選講
如圖,已知四邊形ABCD內接于⊙O,且AB是的⊙O直徑,過點D的⊙O的切線與BA的延長線交于點M.
(1)若MD=6,MB=12,求AB的長;
(2)若AM=AD,求∠DCB的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設全集U=R,集合A={x|2x-1≥1},B={x|x2-4x-5<0}.
(Ⅰ)求A∩B,(UA)∪(UB);
(Ⅱ)設集合C={x|m+1<x<2m-1},若B∩C=C,求實數m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com