精英家教網 > 高中數學 > 題目詳情

(本小題滿分12分)某市調研考試后,某校對甲、乙兩個文科班的數學考試成績進行分析,規定:大于或等于120分為優秀,120分以下為非優秀.統計成績后,得到如下的列聯表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人為優秀的概率為.

 

優秀

非優秀

合計

甲班

10

 

 

乙班

 

30

 

合計

 

 

110

(1)請完成上面的列聯表;

(2)根據列聯表的數據,若按99%的可靠性要求,能否認為“成績與班級有關系”;

(3)若按下面的方法從甲班優秀的學生中抽取一人:把甲班優秀的10名學生從2到11進行編號,先后兩次拋擲一枚均勻的骰子,出現的點數之和為被抽取人的序號.試求抽到9號或10號的概率.

附: )

 

【答案】

(1)

 

優秀

非優秀

合計

甲班

乙班

合計

 (2)可以,理由見解析(3)

【解析】

試題分析:(1)

 

優秀

非優秀

合計

甲班

乙班

合計

……4分

(2)

,我們有99%的把握認為成績與班級有關,達到可靠性要求。       ……8分

(3)設“抽到號”為事件,先后兩次拋擲一枚均勻的骰子,出現的點數為.

所有的基本事件有:、、、……、個.

事件包含的基本事件有:、、、、、、共7個,

由古典概型知:.                                             ……12分

考點:本小題主要考查獨立性檢驗、古典概型等知識,考查學生的運算能力.

點評:解決此類問題只要看清題意,套準公式,仔細計算即可,難度一般較低.

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(文) (本小題滿分12分已知函數y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數的值域和最小正周期;
(2)求函數的遞減區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分12分)已知函數,且。①求的最大值及最小值;②求的在定義域上的單調區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產業建設工程三類,這三類工程所含項目的個數分別占總數的、.現有3名工人獨立地從中任選一個項目參與建設.求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分12分)

某民營企業生產A,B兩種產品,根據市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產品的利潤表示為投資的函數,并寫出它們的函數關系式.(2)該企業已籌集到10萬元資金,并全部投入到A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视