【題目】△ABC的內角A,B,C的對邊分別為a,b,c,已知△ABC的面積為
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周長.
【答案】(1).(2)
.
【解析】試題分析:(1)由三角形面積公式建立等式,再利用正弦定理將邊化成角,從而得出
的值;(2)由
和
計算出
,從而求出角
,根據題設和余弦定理可以求出
和
的值,從而求出
的周長為
.
試題解析:(1)由題設得,即
.
由正弦定理得.
故.
(2)由題設及(1)得,即
.
所以,故
.
由題設得,即
.
由余弦定理得,即
,得
.
故的周長為
.
點睛:在處理解三角形問題時,要注意抓住題目所給的條件,當題設中給定三角形的面積,可以使用面積公式建立等式,再將所有邊的關系轉化為角的關系,有時需將角的關系轉化為邊的關系;解三角形問題常見的一種考題是“已知一條邊的長度和它所對的角,求面積或周長的取值范圍”或者“已知一條邊的長度和它所對的角,再有另外一個條件,求面積或周長的值”,這類問題的通法思路是:全部轉化為角的關系,建立函數關系式,如,從而求出范圍,或利用余弦定理以及基本不等式求范圍;求具體的值直接利用余弦定理和給定條件即可.
科目:高中數學 來源: 題型:
【題目】【2017重慶市八中5月?】已知(
),
,其中
為自然對數的底數.
(1)若恒成立,求實數
的取值范圍;
(2)若在(1)的條件下,當取最大值時,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在四面體ABCD中,E、F分別是AC、BD的中點,若CD=2AB=4,EF⊥AB,則EF與CD所成的角為( )
A.90°
B.45°
C.60°
D.30°
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數y=Asin(ωx+φ)在一個周期內的圖象如圖,此函數的解析式為( )
A.y=2sin(2x+ )
B.y=2sin(2x+ )
C.y=2sin( ﹣
)
D.y=2sin(2x﹣ )
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4—5:不等式選講]
已知函數f(x)=–x2+ax+4,g(x)=│x+1│+│x–1│.
(1)當a=1時,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,平面四邊形ADEF與梯形ABCD所在的平面互相垂直,AD⊥CD,AD⊥ED,AF∥DE,AB∥CD,CD=2AB=2AD=2ED=xAF.
(Ⅰ)若四點F、B、C、E共面,AB=a,求x的值;
(Ⅱ)求證:平面CBE⊥平面EDB;
(Ⅲ)當x=2時,求二面角F﹣EB﹣C的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知平面向量 ,
(
≠
)滿足
=2,且
與
﹣
的夾角為120° , t∈R,則|(1﹣t)
+t
|的最小值是 . 已知
=0,向量
滿足(
﹣
)(
﹣
)=0,|
﹣
|=5,|
﹣
|=3,則
的最大值為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com