精英家教網 > 高中數學 > 題目詳情

已知函數,則實數等于

A.               B.              C.2           D.9

 

【答案】

C

【解析】略

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

對于定義在集合D上的函數y=f(x),若f(x)在D上具有單調性,且存在區間[a,b]⊆D(其中a<b),使當x∈[a,b]時,
f(x)的值域是[a,b],則稱函數f(x)是D上的正函數,區間[a,b]稱為f(x)的“等域區間”.
(1)已知函數f(x)=
x
是[0,+∞)上的正函數,試求f(x)的等域區間.
(2)試探究是否存在實數k,使函數g(x)=x2+k是(-∞,0)上的正函數?若存在,求出k的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=mx3+nx2(m、n∈R,m≠0)的圖象在(2,f(2))處的切線與x軸平行.
(1)求n,m的關系式并求f(x)的單調減區間;
(2)證明:對任意實數0<x1<x2<1,關于x的方程:f′(x)-
f(x2)-f(x1)
x2-x1
=0
在(x1,x2)恒有實數解
(3)結合(2)的結論,其實我們有拉格朗日中值定理:若函數f(x)是在閉區間[a,b]上連續不斷的函數,且在區間(a,b)內導數都存在,則在(a,b)內至少存在一點x0,使得f′(x0)=
f(b)-f(a)
b-a
.如我們所學過的指、對數函數,正、余弦函數等都符合拉格朗日中值定理條件.試用拉格朗日中值定理證明:
當0<a<b時,
b-a
b
<ln
b
a
b-a
a
(可不用證明函數的連續性和可導性).

查看答案和解析>>

科目:高中數學 來源: 題型:

對于定義在集合D上的函數y=f(x),若f(x)在D上具有單調性且存在區間[a,b]⊆D(其中a<b)使當x∈[a,b]時,f(x)的值域是[a,b],則稱函數f(x)是D上的“正函數”,區間[a,b]稱為f(x)的“等域區間”.
(1)已知函數f(x)=x3是正函數,試求f(x)的所有等域區間;
(2)若g(x)=
x+2
+k
是正函數,試求實數k的取值范圍;
(3)是否存在實數a,b(a<b<1)使得函數f(x)=|1-
1
x
|
是[a,b]上的“正函數”?若存在,求出區間[a,b],若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=mx3+nx2(m、n∈R,m≠0)的圖象在(2,f(2))處的切線與x軸平行.
(1)求n,m的關系式并求f(x)的單調減區間;
(2)證明:對任意實數0<x1<x2<1,關于x的方程:數學公式在(x1,x2)恒有實數解
(3)結合(2)的結論,其實我們有拉格朗日中值定理:若函數f(x)是在閉區間[a,b]上連續不斷的函數,且在區間(a,b)內導數都存在,則在(a,b)內至少存在一點x0,使得數學公式.如我們所學過的指、對數函數,正、余弦函數等都符合拉格朗日中值定理條件.試用拉格朗日中值定理證明:
當0<a<b時,數學公式(可不用證明函數的連續性和可導性).

查看答案和解析>>

科目:高中數學 來源:2008-2009學年廣東省廣州六中高三(上)9月月考數學試卷(理科)(解析版) 題型:解答題

已知函數f(x)=mx3+nx2(m、n∈R,m≠0)的圖象在(2,f(2))處的切線與x軸平行.
(1)求n,m的關系式并求f(x)的單調減區間;
(2)證明:對任意實數0<x1<x2<1,關于x的方程:在(x1,x2)恒有實數解
(3)結合(2)的結論,其實我們有拉格朗日中值定理:若函數f(x)是在閉區間[a,b]上連續不斷的函數,且在區間(a,b)內導數都存在,則在(a,b)內至少存在一點x,使得.如我們所學過的指、對數函數,正、余弦函數等都符合拉格朗日中值定理條件.試用拉格朗日中值定理證明:
當0<a<b時,(可不用證明函數的連續性和可導性).

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视