【題目】在海岸處發現北偏東
方向,距
處
海里的
處有一艘走私船.在
處北偏西
方向,距
處
海里的
處的我方緝私船奉命以
海里
小時的速度追截走私船,此時走私船正以
海里
小時的速度從
處向北偏東
方向逃竄.問:緝私船沿什么方向行駛才能最快截獲走私船?并求出所需時間.
科目:高中數學 來源: 題型:
【題目】已知是定義在[-1,1]上的奇函數,且
,若任意的
,當
時,總有
.
(1)判斷函數在[-1,1]上的單調性,并證明你的結論;
(2)解不等式:;
(3)若對所有的
恒成立,其中
(
是常數),求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率e= ,左、右焦點分別為F1、F2 , 定點,P(2,
),點F2在線段PF1的中垂線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設直線l:y=kx+m與橢圓C交于M、N兩點,直線F2M、F2N的傾斜角分別為α、β且α+β=π,求證:直線l過定點,并求該定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設是不小于3的正整數,集合
,對于集合
中任意兩個元素
,
.
定義1:.
定義2:若,則稱
,
互為相反元素,記作
,或
.
(Ⅰ)若,
,
,試寫出
,
,以及
的值;
(Ⅱ)若,證明:
;
(Ⅲ)設是小于
的正奇數,至少含有兩個元素的集合
,且對于集合
中任意兩個不相同的元素
,
,都有
,試求集合
中元素個數的所有可能值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓Γ: +
=1(a>b>0)的離心率與雙曲線x2﹣y2=a2的離心率之和為
,B1、B2為橢圓Γ短軸的兩個端點,P是橢圓Γ上一動點(不與B1、B2重合),直線B1P、B2P分別交直線l:y=4于M、N兩點,△B1B2P的面積記為S1 , △PMN的面積記為S2 , 且S1的最大值為4
.
(1)求橢圓Γ的方程;
(2)若S2=λS1 , 當λ取最小值時,求點P的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: +
=1(a>b>0)的焦點為F1 , F2 , 離心率為
,點P為其上動點,且三角形PF1F2的面積最大值為
,O為坐標原點.
(1)求橢圓C的方程;
(2)若點M,N為C上的兩個動點,求常數m,使 =m時,點O到直線MN的距離為定值,求這個定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】△ABC中,角A,B,C的對邊分別為a,b,c,且三角形的面積S= accosB.
(1)求角B的大;
(2)若a=2 ,點D在AB的延長線上,且AD=3,cos∠ADC=
,求b的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】牛頓法求方程f(x)=0近似根原理如下:求函數y=f(x)在點(xn , f(xn))處的切線y=f′(xn)(x﹣xn)+f(xn),其與x軸交點橫坐標xn+1=xn﹣ (n∈N*),則xn+1比xn更靠近f(x)=0的根,現已知f(x)=x2﹣3,求f(x)=0的一個根的程序框圖如圖所示,則輸出的結果為( )
A.2
B.1.75
C.1.732
D.1.73
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ﹣2cosθ﹣6sinθ+ =0,直線l的參數方程為
(t為參數).
(1)求曲線C的普通方程;
(2)若直線l與曲線C交于A,B兩點,點P的坐標為(3,3),求|PA|+|PB|的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com