【題目】在某次綜合素質測試中,共設有40個考室,每個考室30名考生.在考試結束后,為調查其測試前的培訓輔導情況與測試成績的相關性,抽取每個考室中座位號為05的考生,統計了他們的成績,得到如圖所示的頻率分布直方圖.
(1)在這個調查采樣中,采用的是什么抽樣方法?
(2)估計這次測試中優秀(80分及以上)的人數;
(3)寫出這40名考生成績的眾數、中位數、平均數的估計值.
科目:高中數學 來源: 題型:
【題目】某大學餐飲中心為了了解新生的飲食習慣,在全校一年級學生中進行了抽樣調查,調查結果如下表所示:
喜歡甜品 | 不喜歡甜品 | 合計 | |
南方學生 | 60 | 20 | 80 |
北方學生 | 10 | 10 | 20 |
合計 | 70 | 30 | 100 |
根據表中數據,問是否有
的把握認為“南方學生和北方學生在選用甜品的飲食習慣方面有差異”;
已知在被調查的北方學生中有5名數學系的學生,其中2名喜歡甜品,現在從這5名學生中隨機抽取3人,求至多有1人喜歡甜品的概率.
附:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線
的參數方程為
(其中
為參數)曲線
的普通方程為
,以坐標原點為極點,以
軸正半軸為極軸建立極坐標系.
(1)求曲線和曲線
的極坐標方程;
(2)射線:
依次與曲線
和曲線
交于
、
兩點,射線
:
依次與曲線
和曲線
交于
、
兩點,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三棱柱中,
平面
,
,
,點
在線段
上,且
,
.
(1)試用空間向量證明直線與平面
不平行;
(2)設平面與平面
所成的銳二面角為
,若
,求
的長;
(3)在(2)的條件下,設平面平面
,求直線
與平面
的所成角.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一組數據中的每一個數據都乘以2,再減去80,得到一組新數據,若求得新的數據的平均數是1.2,方差是4.4,則原來數據的平均數和方差分別是( )
A.40.6,1.1B.48.8,4.4C.81.2,44.4D.78.8,75.6
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著教育信息化2.0時代的到來,依托網絡進行線上培訓越來越便捷,逐步成為實現全民終身學習的重要支撐.最近某高校繼續教育學院采用線上和線下相結合的方式開展了一次300名學員參加的“國學經典誦讀”專題培訓.為了解參訓學員對于線上培訓、線下培訓的滿意程度,學院隨機選取了50名學員,將他們分成兩組,每組25人,分別對線上、線下兩種培訓進行滿意度測評,根據學員的評分(滿分100分)繪制了如下莖葉圖:
(1)根據莖葉圖判斷學員對于線上、線下哪種培訓的滿意度更高?并說明理由;
(2)求50名學員滿意度評分的中位數,并將評分不超過
、超過
分別視為“基本滿意”、“非常滿意”兩個等級.
(i)利用樣本估計總體的思想,估算本次培訓共有多少學員對線上培訓非常滿意?
(ii)根據莖葉圖填寫下面的列聯表:
并根據列聯表判斷能否有99.5%的把握認為學員對兩種培訓方式的滿意度有差異?
附:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】棱長為1的正方體中,點
、
分別在線段
、
上運動(不包括線段端點),且
.以下結論:①
;②若點
、
分別為線段
、
的中點,則由線
與
確定的平面在正方體
上的截面為等邊三角形;③四面體
的體積的最大值為
;④直線
與直線
的夾角為定值.其中正確的結論為______.(填序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線
的參數方程為
(其中
為參數)曲線
的普通方程為
,以坐標原點為極點,以
軸正半軸為極軸建立極坐標系.
(1)求曲線和曲線
的極坐標方程;
(2)射線:
依次與曲線
和曲線
交于
、
兩點,射線
:
依次與曲線
和曲線
交于
、
兩點,求
的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com