精英家教網 > 高中數學 > 題目詳情

(本題滿分12分)在△ABC中,分別為角A,B,C的對邊,設,(1)若,且B-C=,求角C.(2)若,求角C的取值范圍.

 

【答案】

(1)C=

(2)0<C≤

【解析】解;(1)由f(1)=0,得a2-a2+b2-4c2=0, ∴b= 2c…………(1分).

又由正弦定理,得b= 2RsinB,c=2RsinC,將其代入上式,得sinB=2sinC…………(2分)

∵B-C=,∴B=+C,將其代入上式,得sin(+C)=2sinC……………(3分)

∴sin()cosC + cos sinC =2sinC,整理得,…………(4分)

∴tanC=……………(5分)

∵角C是三角形的內角,∴C=…………………(6分)

(2)∵f(2)=0,∴4a2-2a2+2b2-4c2=0,即a2+b2-2c2=0……………(7分)

由余弦定理,得cosC=……………………(8分)

=

∴cosC=(當且僅當a=b時取等號)…………(10分)

∴cosC≥,

∠C是銳角,又∵余弦函數在(0,)上遞減,∴.0<C≤………………(12分)

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(本題滿分12分)

在△ABC中,角A、B、C的對邊分別為ab、c,且

??????(Ⅰ)求角A的大;??????(Ⅱ)若,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本題滿分12分)

在平面直角坐標系中,已知A1(-3,0),A2(3,0),P(x,y),M(,0),若實數λ使向量,λ,滿足λ2·(2=·

(1)求點P的軌跡方程,并判斷P點的軌跡是怎樣的曲線;

(2)當λ=時,過點A1且斜率為1的直線與此時(1)中的曲線相交的另一點為B,能否在直線x=-9上找一點C,使ΔA1BC為正三角形(請說明理由)。

查看答案和解析>>

科目:高中數學 來源:2012-2013學年遼寧沈陽二中等重點中學協作體高三領航高考預測(二)文數學卷(解析版) 題型:解答題

(本題滿分12分)在分別為A,B,C所對的邊,

(1)判斷的形狀;

(2)若,求的取值范圍

 

查看答案和解析>>

科目:高中數學 來源:2013屆云南大理州賓川四中高二下學期4月考試文科數學試卷(解析版) 題型:解答題

(本題滿分12分)在各項為正的數列中,數列的前n項和滿足

(1)求;(2) 由(1)猜想數列的通項公式;(3) 求

 

查看答案和解析>>

科目:高中數學 來源:2013屆云南省高二上學期期末考試理科數學 題型:解答題

(本題滿分12分)在邊長為2的正方體中,E是BC的中點,F是的中點

(Ⅰ)求證:CF∥平面

(Ⅱ)求二面角的平面角的余弦值。

 

 

 

 

 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视