【題目】如圖,以等腰直角三角形斜邊BC上的高AD為折痕,把△ABD和△ACD折成互相垂直的兩個平面后,某學生得出下列四個結論:
①;
②∠BAC=60°;
③三棱錐D﹣ABC是正三棱錐;
④平面ADC和平面ABC的垂直.
其中正確的是( 。
A. ①② B. ②③ C. ③④ D. ①④
科目:高中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,AB=BC=4,點E在線段AB上.過點E作EF∥BC交AC于點F,將△AEF沿EF折起到△PEF的位置(點A與P重合),使得∠PEB=60°.
(1)求證:EF⊥PB.
(2)試問:當點E在線段AB上移動時,二面角PFCB的平面角的余弦值是否為定值?若是,求出其定值;若不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分14分)
如圖1,在三棱錐P-ABC中,PA⊥平面ABC,AC⊥BC,D為側棱PC上一點,它的正(主)視圖和側(左)視圖如圖2所示.
(1) 證明:AD⊥平面PBC;
(2) 在∠ACB的平分線上確定一點Q,使得PQ∥平面ABD,并求此時PQ的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點,
,動點
滿足
.
(1)求動點的軌跡
的方程;
(2)設點為軌跡
上異于原點
的兩點,且
.
①若為常數,求證:直線
過定點
;
②求軌跡上任意一點
到①中的點
距離的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線過橢圓
的右焦點且與橢圓
交于
兩點,
為
中點,
的斜率為
.
(1)求橢圓的方程;
(2)設是橢圓
的動弦,且其斜率為1,問橢圓
上是否存在定點
,使得直線
的斜率
滿足
?若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4 , 坐標系與參數方程]
在直角坐標系xOy中,曲線C的參數方程為 (θ為參數),直線l的參數方程為
(t為參數).(10分)
(1)若a=﹣1,求C與l的交點坐標;
(2)若C上的點到l距離的最大值為 ,求a.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】命題p:關于x的方程x2+ax+2=0無實根,命題q:函數f(x)=logax在(0,+∞)上單調遞增,若“p∧q”為假命題,“p∨q”真命題,求實數a的取值范圍
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列五個命題:
①當時,有
;
②若是銳角三角形,則
;
③已知是等差數列
的前
項和,若
,則
;
④函數與
的圖像關于直線
對稱;
⑤當時,不等式
恒成立,則實數
的取值范圍為
.
其中正確命題的序號為___________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C1:y2=2x與C2:y=x2在第一象限內的交點為P.
(1)求過點P且與曲線C2相切的直線方程;
(2)求兩條曲線所圍圖形(如圖所示的陰影部分)的面積S.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com