精英家教網 > 高中數學 > 題目詳情

(本小題滿分13分)如圖,拋物線的頂點在坐標原點,且開口向右,點A,B,C在拋物線上,△ABC的重心F為拋物線的焦點,直線AB的方程為.(Ⅰ)求拋物線的方程;(Ⅱ)設點M為某定點,過點M的動直線l與拋物線相交于P,Q兩點,試推斷是否存在定點M,使得以線段PQ為直徑的圓經過坐標原點?若存在,求點M的坐標;若不存在,說明理由.

(Ⅰ)  y2=16x.   (Ⅱ)   


解析:

(Ⅰ)設拋物線方程為,

聯立消去x,得                               (2分)

設點,則.

所以.                          (4分)

設點,因為△ABC的重心為,則

,所以.                    (5分)

因為點C在拋物線上,則,解得p=8,此時.

故拋物線方程為y2=16x.  (6分)

(Ⅱ)設過定點M的動直線l的方程為,代入拋物線方程y2=16x,得

,所以. (8分)若以線段PQ為直徑的圓經過坐標原點,則,即.所以,即,所以.

因為,所以.(10分)所以直線l的方程為,即,從而直線l必經過定點. (11分)若直線l的斜率不存在,因為直線與拋物線的交點為,此時仍有.故存在定點滿足條件. (13分)

練習冊系列答案
相關習題

科目:高中數學 來源:2015屆江西省高一第二次月考數學試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數.

(1)求函數的最小正周期和最大值;

(2)在給出的直角坐標系中,畫出函數在區間上的圖象.

(3)設0<x<,且方程有兩個不同的實數根,求實數m的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數學 題型:解答題

(本小題滿分13分)已知定義域為的函數是奇函數.

(1)求的值;(2)判斷函數的單調性;

(3)若對任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數學 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:河南省09-10學年高二下學期期末數學試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,的中點。

(Ⅰ)求證:∥平面;

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數學 來源:2010-2011學年福建省高三5月月考調理科數學 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數,數列{}的首項.

(1) 求函數的表達式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數列的前項和

 

 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视