精英家教網 > 高中數學 > 題目詳情
(2013•淄博二模)已知函數f(x)在實數集R上具有下列性質:
①直線x=1是函數f(x)的一條對稱軸;
②f(x+2)=-f(x);
③當1≤x1<x2≤3時,(f(x2)-f(x1))•(x2-x1)<0,
則f(2011)、f(2012)、f(2013)從大到小的順序為
f(2013),f(2012),f(2011)
f(2013),f(2012),f(2011)
分析:由①得f(-x+1)=f(x+1);由②可求得f(x)的周期;由③可判斷f(x)在[1,3]上的單調性.運用函數周期性及f(-x+1)=f(x+1)可把f(2011)、f(2012)、
f(2013)轉化到區間[1,3]上處理,再利用單調性即可作出比較.
解答:解:由②f(x+2)=-f(x)可得f(x+4)=-f(x+2)=-[-f(x)]=f(x),所以f(x)為以4為周期的函數.
由③知:f(x)在[1,3]上為減函數,由①得,f(-x+1)=f(x+1),
所以f(2011)=f(4×502+3)=f(3),f(2012)=f(4×503)=f(0)=f(-1+1)=f(1+1)=f(2),f(2013)=f(4×503+1)=f(1),
因為f(x)在[1,3]上為減函數,所以f(1)>f(2)>f(3),即f(2013)>f(2012)>f(2011),
故答案為 f(2013),f(2012),f(2011).
點評:本題考查函數的奇偶性、單調性、周期性及其應用,準確理解相關定義及其變形是解決本題的基礎,解決本題的基本思路利用性質把問題轉化到區間[1,3]上解決,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•淄博二模)在如圖所示的幾何體中,△ABC是邊長為2的正三角形,AE=1,AE⊥平面ABC,平面BCD⊥平面ABC,BD=CD,且BD⊥CD.
(Ⅰ)AE∥平面BCD;
(Ⅱ)平面BDE⊥平面CDE.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•淄博二模)已知P(x,y)為函數y=1+lnx圖象上一點,O為坐標原點,記直線OP的斜率k=f(x).
(Ⅰ)若函數f(x)在區間(m,m+
1
3
)
(m>0)上存在極值,求實數m的取值范圍;
(Ⅱ)當 x≥1時,不等式f(x)≥
t
x+1
恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•淄博二模)如圖,平行四邊形ABCD中,AB=2,AD=1,∠A=60°,點M在AB邊上,且AM=
1
3
AB,則
DM
DB
•等于( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•淄博二模)等比數列{cn}滿足cn+1+cn=10•4n-1(n∈N*),數列{an}的前n項和為Sn,且an=log2cn
(I)求an,Sn;
(II)數列{bn}滿足bn=
14Sn-1
,Tn為數列{bn}
的前n項和,是否存在正整數m,k(1<m<k),使得T1,Tm,Tk成等比數列?若存在,求出所有m,k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•淄博二模)集合A={-1,0,1},B={y|y=ex,x∈A},則A∩B=( 。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视