【題目】已知三棱錐A﹣BCD的所有棱長均相等,E為DC的中點,若點P為AC中點,則直線PE與平面BCD所成角的正弦值為_____,若點Q在棱AC所在直線上運動,則直線QE與平面BCD所成角正弦值的最大值為_____.
【答案】
【解析】
,則直線PE與平面BCD所成角等于直線
與平面BCD所成角,過A作AO⊥底面BCD,垂足為O,連結OD,則∠ADO是直線PE與平面BCD所成角,在
中求解即得,
是一個正四面體,當Q與A重合時,直線QE與平面BCD所成角正弦值取最大值,在
中計算可得最大值.
連結BE,AE,過A作AO⊥底面BCD,垂足為O,連結OD,
則∠ADO是直線PE與平面BCD所成角,
設三棱錐A﹣BCD的所有棱長均相等,設棱長為2,
則DO=BOBE
,
AO,
∴sin∠ADO.
∴直線PE與平面BCD所成角的正弦值為.
當Q與A重合時,直線QE與平面BCD所成角正弦值取最大值,
此時直線QE與平面BCD所成角為∠AEO,AE,
∴直線QE與平面BCD所成角正弦值的最大值為:
sin∠AEO.
故答案為:,
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,拋物線
的準線被橢圓
截得的線段長為
.
(1)求橢圓的方程;
(2)如圖,點分別是橢圓
的左頂點、左焦點直線
與橢圓
交于不同的兩點
(
都在
軸上方).且
.證明:直線
過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點
,
,
,
是橢圓上任意三點,
,
關于原點對稱且滿足
.
(1)求橢圓的方程.
(2)若斜率為的直線與圓:
相切,與橢圓
相交于不同的兩點
、
,求
時,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于集合,定義函數
對于兩個集合
,定義集合
. 已知
,
.
(Ⅰ)寫出和
的值,并用列舉法寫出集合
;
(Ⅱ)用表示有限集合
所含元素的個數,求
的最小值;
(Ⅲ)有多少個集合對,滿足
,且
?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
1
當
時,求曲線
在
處的切線方程;
2
若
是R上的單調遞增函數,求a的取值范圍;
3
若函數
對任意的實數
,存在唯一的實數
,使得
成立,求a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓過點
,其長軸、焦距和短軸的長的平方依次成等差數列
直線l與x軸正半軸和y軸分別交于點Q、P,與橢圓分別交于點M、N,各點均不重合且滿足
.
求橢圓的標準方程;
若
,試證明:直線l過定點并求此定點.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com