精英家教網 > 高中數學 > 題目詳情

若點的坐標為,為拋物線的焦點,點是拋物線上的一動點,則取最小值時點的坐標為(    )

A、     B、    C、     D、

 

【答案】

C

【解析】略

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•普陀區一模)設點F是拋物L:y2=2px(p>0)的焦點,P1,P2,…,Pn是拋物線L上的n個不同的點n(n≥3,n∈N*).
(1)當p=2時,試寫出拋物線L上三點P1、P2、P3的坐標,時期滿足|
FP1
|+|
FP2
|+|
FP3
|=6

(2)當n≥3時,若
FP1
+
FP2
+…+
FPn
=
0
,求證:|
FP1
|+|
FP2
|+…+|
FPn
|=np

(3)當n>3時,某同學對(2)的逆命題,即:“若|
FP1
|+| 
FP2
|+…+|  
FPN
|=np
,則
FP1
+
FP2
+…+
FPN
=
0
”開展了研究并發現其為假命題.
請你就此從以下三個研究方向中任選一個開展研究:
1.試構造一個說明該命題確實是假命題的反例;
2.對任意給定的大于3的正整數n,試構造該假命題反例的一般形式,并說明你的理由:
3.如果補充一個條件后能使該命題為真,請寫出你認為需要補充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設點F是拋物L:y2=2px(p>0)的焦點,P1,P2,…,Pn是拋物線L上的n個不同的點n(n≥3,n∈N*).
(1)當p=2時,試寫出拋物線L上三點P1、P2、P3的坐標,時期滿足數學公式
(2)當n≥3時,若數學公式,求證:數學公式;
(3)當n>3時,某同學對(2)的逆命題,即:“若數學公式,則數學公式”開展了研究并發現其為假命題.
請你就此從以下三個研究方向中任選一個開展研究:
1.試構造一個說明該命題確實是假命題的反例;
2.對任意給定的大于3的正整數n,試構造該假命題反例的一般形式,并說明你的理由:
3.如果補充一個條件后能使該命題為真,請寫出你認為需要補充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓是拋物

的一條切線.

   (I)求橢圓的方程;

   (II)過點的動直線L交橢圓C于A、B兩點,試問:在坐標平面上是否存在一個定點T,使得以AB為直徑的圓恒過點T?若存在,求出點T的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,設拋物線方程為,M為直線上任意一點,過M引拋物

線的切線,切點分別為A,B

(I)求證A,M,B三點的橫坐標成等差數列;

(Ⅱ)已知當M點的坐標為(2,一2p)時,.求此時拋物線的方程

(Ⅲ)是否存在點M.使得點C關于直線AB的對稱點D在拋物線上,其中,點C滿足(O為坐標原點)若存在。求出所有適合題意的點M的坐標;

若不存在,請說明理由。

查看答案和解析>>

科目:高中數學 來源:2012年上海市普陀區高考數學一模試卷(理科)(解析版) 題型:解答題

設點F是拋物L:y2=2px(p>0)的焦點,P1,P2,…,Pn是拋物線L上的n個不同的點n(n≥3,n∈N*).
(1)當p=2時,試寫出拋物線L上三點P1、P2、P3的坐標,時期滿足;
(2)當n≥3時,若,求證:;
(3)當n>3時,某同學對(2)的逆命題,即:“若,則”開展了研究并發現其為假命題.
請你就此從以下三個研究方向中任選一個開展研究:
1.試構造一個說明該命題確實是假命題的反例;
2.對任意給定的大于3的正整數n,試構造該假命題反例的一般形式,并說明你的理由:
3.如果補充一個條件后能使該命題為真,請寫出你認為需要補充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视