精英家教網 > 高中數學 > 題目詳情
已知二次函數f(x)=ax2+bx+c.
(1)若a>b>c且f(1)=0,試證明f(x)必有兩個零點;
(2)若對x1,x2∈R且x1<x2,f(x1)≠f(x2),方程f(x)=
12
[f(x1)+f(x2)]有兩個不等實根,證明必有一實根屬于(x1,x2).
分析:(1)由條件得到a>0,c<0,判別式△=b2-4ac≥-4ac>0,從而證得方程ax2+bx+c=0有兩個不等實根.
(2)令g(x)=f(x)-
1
2
[f(x1 )+f(x2)],證明g(x1)•g(x2)<0,可得g(x)=0在(x1,x2)內必有一實根,
問題得證.
解答:證明:(1)∵f(1)=0,∴a+b+c=0.又∵a>b>c,∴a>0,c<0,即ac<0.
又∵△=b2-4ac≥-4ac>0,∴方程ax2+bx+c=0有兩個不等實根.
所以,函數f(x)必有兩個零點.
(2)令g(x)=f(x)-
1
2
[f(x1)+f(x2)],
則g(x1)=f(x1)-
1
2
[f(x1)+f(x2)]=
f(x1)-f(x2)
2
,
g(x2)=f(x2)-
1
2
[f(x1)+f(x2)]=-
f(x1)-f(x2)
2

∴g(x1)•g(x2)=
f(x1)-f(x2)
2
f(x2)-f(x1)
2
=-
1
4
[f(x1)-f(x2)]2
∵f(x1)≠f(x2),∴g(x1)•g(x2)<0.
∴g(x)=0在(x1,x2)內必有一實根.
∴方程f(x)=
1
2
[f(x1)+f(x2)]在(x1,x2)內必有一實根.
再由 g(x1)•g(x2)<0可得二次函數g(x)的函數值可正可負,
故函數g(x)=f(x)-
1
2
[f(x1)+f(x2)]的圖象與x軸一定有兩個交點,
故方程f(x)=
1
2
[f(x1)+f(x2)]有兩個不等實根.
綜上可得,方程f(x)=
1
2
[f(x1)+f(x2)]有兩個不等實根,且必有一實根屬于(x1,x2).
點評:本題考查二次函數的性質,方程的根就是對應函數的零點,以及函數零點存在的條件,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知二次函數f(x)=x2+2(m-2)x+m-m2
(I)若函數的圖象經過原點,且滿足f(2)=0,求實數m的值.
(Ⅱ)若函數在區間[2,+∞)上為增函數,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二次函數f(x)=ax2+bx+c(a≠0)的圖象過點(0,1),且與x軸有唯一的交點(-1,0).
(Ⅰ)求f(x)的表達式;
(Ⅱ)設函數F(x)=f(x)-kx,x∈[-2,2],記此函數的最小值為g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二次函數f(x)=x2-16x+q+3.
(1)若函數在區間[-1,1]上存在零點,求實數q的取值范圍;
(2)若記區間[a,b]的長度為b-a.問:是否存在常數t(t≥0),當x∈[t,10]時,f(x)的值域為區間D,且D的長度為12-t?請對你所得的結論給出證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•廣州一模)已知二次函數f(x)=x2+ax+m+1,關于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數.設g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值時,函數φ(x)=g(x)-kln(x-1)存在極值點,并求出極值點;
(3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)已知二次函數f(x)的圖象與x軸的兩交點為(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函數f(x)的圖象的頂點是(-1,2),且經過原點,求f(x)的解析式.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视