精英家教網 > 高中數學 > 題目詳情

【題目】為了研究鐘表與三角函數的關系,以9點與3點所在直線為x軸,以6點與12點為y軸,設秒針針尖指向位置P(x,y),若初始位置為P0 ),秒針從P0(注此時t=0)開始沿順時針方向走動,則點P的縱坐標y與時間t(秒)的函數關系為(
A.y=sin( t+
B.y=sin( t﹣
C.y=sin(﹣ t+
D.y=sin(﹣ t﹣

【答案】C
【解析】解:以9點與3點所在直線為x軸,以6點與12點為y軸,設秒針針尖指向位置P(x,y),
若初始位置為P0 , ),秒針從P0(注此時t=0)開始沿順時針方向走動,
由于秒針每60秒順時針轉一周,故轉速ω=﹣ =﹣ ,
由于初始位置為P0 , ),故經過時間t,秒針與x正半軸的夾角為﹣ t+ ,
再由秒針的長度為|OP|=1,可得點P的縱坐標y與時間t的函數關系為y=sin(﹣ t+ ),
故選:C.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ax(a>0,a≠1)在區間[﹣1,2]上的最大值為8,最小值為m.若函數g(x)=(3﹣10m) 是單調增函數,則a=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.

(1)求A∪B,(CUA)∩B;

(2)若A∩C≠,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義域為的函數是奇函數.

(1) 求實數的值;

(2) 判斷并用定義證明該函數在定義域上的單調性;

(3) 若方程內有解,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知所在的平面, 的直徑, 上一點,且中點, 中點.

(1)求證: ;

(2)求證: ;

(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數集,)具有性質:對任意),兩數中至少有一個屬于集合,現給出以下四個命題:①數集具有性質;②數集具有性質;③若數集具有性質,則;④若數集)具有性質,則;其中真命題有________(填寫序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線x2=2py(p>0)的頂點到焦點的距離為1,過點P(0,p)作直線與拋物線交于A(x1 , y1),
B(x2 , y2)兩點,其中x1>x2
(1)若直線AB的斜率為 ,過A,B兩點的圓C與拋物線在點A處有共同的切線,求圓C的方程;
(2)若 ,是否存在異于點P的點Q,使得對任意λ,都有 ⊥( ﹣λ ),若存在,求Q點坐標;不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】集合、的一個等濃二分劃(即,.記集合中所有數的積為,集合中所有數的積為的等濃二分劃的特征數.證明:

(1)集合的等濃二分劃的特征數一定為合數;

(2)若等濃二分劃的特征數不為2的倍數則該特征數為的倍數.

有限集合的元素個數簡記為.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數集其中,,2,,n,,若對任意的2,,都存在,,使得下列三組向量中恰有一組共線:

向量與向量

向量與向量;

向量與向量,則稱X具有性質P,例如2,具有性質P.

3,具有性質P,則x的取值為______

若數集3,,具有性質P,則的最大值與最小值之積為______

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视