【題目】已知某企業的近3年的前7個月的月利潤(單位:百萬元)如下面的折線圖所示:
(1)試問這3年的前7個月中哪個月的月平均利潤較高?
(2)通過計算判斷這3年的前7個月的總利潤的發展趨勢;
(3)試以第3年的前4個月的數據(如下表),用線性回歸的擬合模式估測第3年8月份的利潤.
月份x | 1 | 2 | 3 | 4 |
利潤y(單位:百萬元) | 4 | 4 | 6 | 6 |
相關公式: =
=
,
=
﹣
x.
科目:高中數學 來源: 題型:
【題目】為研究男女同學空間想象能力的差異,孫老師從高一年級隨機選取了20名男生、20名女生,進行空間圖形識別測試,得到成績莖葉圖如下,假定成績大于等于80分的同學為“空間想象能力突出”,低于80分的同學為“空間想象能力正常”.
(1)完成下面2×2列聯表,
空間想象能力突出 | 空間想象能力正常 | 合計 | |
男生 |
|
| |
女生 |
| ||
合計 |
|
(2)判斷是否有90%的把握認為“空間想象能力突出”與性別有關;
(3)從“空間想象能力突出”的同學中隨機選取男生2名、女生2名,記其中成績超過90分的人數為ξ,求隨機變量ξ的分布列和數學期望. 下面公式及臨界值表僅供參考:
P(X2≥k) | 0.100 | 0.050 | 0.010 |
k | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面直角坐標系xOy中,已知橢圓 的左焦點為F,離心率為
,過點F且垂直于長軸的弦長為
.
(I)求橢圓C的標準方程;
(Ⅱ)設點A,B分別是橢圓的左、右頂點,若過點P(﹣2,0)的直線與橢圓相交于不同兩點M,N.
(i)求證:∠AFM=∠BFN;
(ii)求△MNF面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足a1=1,Sn=2an+1 , 其中Sn為{an}的前n項和(n∈N*).
(Ⅰ)求S1 , S2及數列{Sn}的通項公式;
(Ⅱ)若數列{bn}滿足 ,且{bn}的前n項和為Tn , 求證:當n≥2時,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市為了解游客人數的變化規律,提高旅游服務質量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數據,繪制了下面的折線圖.
根據該折線圖,下列結論錯誤的是( )
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xoy中圓C的參數方程為 (α為參數),以原點O為極點,x軸的非負半軸為極軸建立極坐標系,直線l的極坐標方程為
.
(1)求圓C的直角坐標方程及其圓心C的直角坐標;
(2)設直線l與曲線C交于A,B兩點,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知中心在原點,焦點在x軸上的橢圓的一個焦點為( ,0),(1,
)是橢圓上的一個點.
(1)求橢圓的標準方程;
(2)設橢圓的上、下頂點分別為A,B,P(x0 , y0)(x0≠0)是橢圓上異于A,B的任意一點,PQ⊥y軸,Q為垂足,M為線段PQ中點,直線AM交直線l:y=﹣1于點C,N為線段BC的中點,如果△MON的面積為 ,求y0的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓 的右焦點
,且經過點
,點M是x軸上的一點,過點M的直線l與橢圓C交于A,B兩點(點A在x軸的上方)
(1)求橢圓C的方程;
(2)若|AM|=2|MB|,且直線l與圓 相切于點N,求|MN|的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com