【題目】數學中有許多形狀優美、寓意美好的曲線,曲線C:就是其中之一(如圖).給出下列三個結論:
①曲線C恰好經過6個整點(即橫、縱坐標均為整數的點);
②曲線C上任意一點到原點的距離都不超過;
③曲線C所圍成的“心形”區域的面積小于3.
其中,所有正確結論的序號是
A. ①B. ②C. ①②D. ①②③
科目:高中數學 來源: 題型:
【題目】已知數列的各項均不為零.設數列
的前n項和為Sn,數列
的前n項和為Tn, 且
.
(1)求的值;
(2)證明:數列是等比數列;
(3)若對任意的
恒成立,求實數
的所有值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于集合,
,
,
,定義
.集合
中的元素個數記為
.規定:若集合
滿足
,則稱集合具
有性質
.
(1)已知集合,
,寫出
,
的值;
(2)已知集合,其中
,證明:
有性質
;
(3)已知集合,
有性質
,且
求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的焦點在x軸上,一個頂點為,離心率為
,過橢圓的右焦點F的直線l與坐標軸不垂直,且交橢圓于A,B兩點.
求橢圓的方程;
設點C是點A關于x軸的對稱點,在x軸上是否存在一個定點N,使得C,B,N三點共線?若存在,求出定點的坐標;若不存在,說明理由;
設
,是線段
為坐標原點
上的一個動點,且
,求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線上的任意一點到兩定點
、
距離之和為
,直線
交曲線
于
兩點,
為坐標原點.
(1)求曲線的方程;
(2)若不過點
且不平行于坐標軸,記線段
的中點為
,求證:直線
的斜率與
的斜率的乘積為定值;
(3)若直線過點
,求
面積的最大值,以及取最大值時直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等比數列{an}滿足a1+a4=18,a2+a5=36.
(1)求數列{an}的通項公式an;
(2)若數列{bn}滿足bn=an+log2an,求數列{bn}的前n項和Sn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學的環保社團參照國家環境標準制定了該校所在區域空氣質量指數與空氣質量等級對應關系如下表(假設該區域空氣質量指數不會超過300):
空氣質量指數 | ||||||
空氣質量等級 | 1級優 | 2級良 | 3級輕度污染 | 4級中度污染 | 5級重度污染 | 6級嚴重污染 |
該社團將該校區在2018年11月中10天的空氣質量指數監測數據作為樣本,繪制的頻率分布直方圖如下圖,把該直方圖所得頻率估計為概率.
(Ⅰ)以這10天的空氣質量指數監測數據作為估計2018年11月的空氣質量情況,則2018年11月中有多少天的空氣質量達到優良?
(Ⅱ)已知空氣質量等級為1級時不需要凈化空氣,空氣質量等級為2級時每天需凈化空氣的費用為1000元,空氣質量等量等級為3級時每天需凈化空氣的費用為2000元.若從這10天樣本中空氣質量為1級、2級、3級的天數中任意抽取兩天,求這兩天的凈化空氣總費用為3000元的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com