【題目】設,
,
為兩兩不重合的平面,
,
,
為兩兩不重合的直線,給出下列四個命題:
①若,
,則
;
②若,
,
,
,則
;
③若,
,則
;
④若,
,
,
,則
.
其中真命題是( )
A.①③B.②④C.③④D.①②
科目:高中數學 來源: 題型:
【題目】已知矩形和菱形
所在平面互相垂直,如圖,其中
,
,
,點
為線段
的中點.
(Ⅰ)試問在線段上是否存在點
,使得直線
平面
?若存在,請證明
平面
,并求出
的值,若不存在,請說明理由;
(Ⅱ)求二面角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是某機械零件的幾何結構,該幾何體是由兩個相同的直四棱柱組合而成的,且前后、左右、上下均對稱,每個四棱柱的底面都是邊長為2的正方形,高為4,且兩個四棱柱的側棱互相垂直.則這個幾何體有________個面,其體積為________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為抑制房價過快上漲和過度炒作,各地政府響應中央號召,因地制宜出臺了系列房價調控政策.某市擬定出臺“房產限購的年齡政策”.為了解人們對“房產限購年齡政策”的態度,在2060歲的人群中隨機調查100人,調查數據的頻率分布直方圖和支持“房產限購”的人數與年齡的統計結果如圖所示:
年齡 | |||||
支持的人數 | 15 | 5 | 15 | 28 | 17 |
(1)由以上統計數據填列聯表,并判斷能否在犯錯誤的概率不超過0.05的前提下認為以44歲為分界點的不同人群對“房產限購年齡政策”的支持度有差異?
44歲以下 | 44歲及44歲以上 | 總計 | |
支持 | |||
不支持 | |||
總計 |
(2)若以44歲為分界點,從不支持“房產限購”的人中按分層抽樣的方法抽取8人參加政策聽證會,現從這8人中隨機抽2人.記抽到44歲以上的人數為,求隨機變量
的分布列及數學期望.
參考公式:.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(Ⅰ)不需證明,直接寫出的奇偶性:
(Ⅱ)討論的單調性,并證明
有且僅有兩個零點:
(Ⅲ)設是
的一個零點,證明曲線
在點
處的切線也是曲線
的切線.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】盲盒里面通常裝的是動漫、影視作品的周邊,或者設計師單獨設計出來的玩偶.由于盒子上沒有標注,購買者只有打開才會知道自己買到了什么,因此這種驚喜吸引了眾多年輕人,形成了“盲盒經濟”.某款盲盒內可能裝有某一套玩偶的、
、
三種樣式,且每個盲盒只裝一個.
(1)若每個盲盒裝有、
、
三種樣式玩偶的概率相同.某同學已經有了
樣式的玩偶,若他再購買兩個這款盲盒,恰好能收集齊這三種樣式的概率是多少?
(2)某銷售網點為調查該款盲盒的受歡迎程度,隨機發放了200份問卷,并全部收回.經統計,有的人購買了該款盲盒,在這些購買者當中,女生占
;而在未購買者當中,男生女生各占
.請根據以上信息填寫下表,并分析是否有
的把握認為購買該款盲盒與性別有關?
女生 | 男生 | 總計 | |
購買 | |||
未購買 | |||
總計 |
參考公式:,其中
.
參考數據:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(3)該銷售網點已經售賣該款盲盒6周,并記錄了銷售情況,如下表:
周數 | 1 | 2 | 3 | 4 | 5 | 6 |
盒數 | 16 | ______ | 23 | 25 | 26 | 30 |
由于電腦故障,第二周數據現已丟失,該銷售網點負責人決定用第4、5、6周的數據求線性回歸方程,再用第1、3周數據進行檢驗.
①請用4、5、6周的數據求出關于
的線性回歸方程
;
(注:,
)
②若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2盒,則認為得到的線性回歸方程是可靠的,試問①中所得的線性回歸方程是否可靠?
③如果通過②的檢驗得到的回歸直線方程可靠,我們可以認為第2周賣出的盒數誤差也不超過2盒,請你求出第2周賣出的盒數的可能取值;如果不可靠,請你設計一個估計第2周賣出的盒數的方案.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某運動制衣品牌為了成衣尺寸更精準,現選擇15名志愿者,對其身高和臂展進行測量(單位:厘米),左圖為選取的15名志愿者身高與臂展的折線圖,右圖為身高與臂展所對應的散點圖,并求得其回歸方程為,以下結論中不正確的為
A. 15名志愿者身高的極差小于臂展的極差
B. 15名志愿者身高和臂展成正相關關系,
C. 可估計身高為190厘米的人臂展大約為189.65厘米,
D. 身高相差10厘米的兩人臂展都相差11.6厘米,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程為
(
為參數).以
為極點,
軸的正半軸為極軸建立極坐標系,直線
的極坐標方程為
(
),將曲線
向左平移2個單位長度得到曲線
.
(1)求曲線的普通方程和極坐標方程;
(2)設直線與曲線
交于
兩點,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com