【題目】某兒童節在“六一”兒童節推出了一項趣味活動.參加活動的兒童需轉動如圖所示的轉盤兩次,每次轉動后,待轉盤停止轉動時,記錄指針所指區域中的數.記兩次記錄的數分別為x,y.獎勵規則如下:
①若xy≤3,則獎勵玩具一個;
②若xy≥8,則獎勵水杯一個;
③其余情況獎勵飲料一瓶.
假設轉盤質地均勻,四個區域劃分均勻,小亮準備參加此項活動.
(1)求小亮獲得玩具的概率;
(2)請比較小亮獲得水杯與獲得飲料的概率的大小,并說明理由.
【答案】
(1)
解:兩次記錄的數為(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),(2,1),(3,1),(4,1),(3,2),(4,2),(4,3),共12個,
滿足xy≤3,有(1,2),(1,3),(2,1),(3,1),共4個,
∴小亮獲得玩具的概率為 =
;
(2)
解:滿足xy≥8,(2,4),(3,4),(4,2),(4,3),共4個,∴小亮獲得水杯的概率為 =
;
小亮獲得飲料的概率為1﹣ ﹣
=
,
∴小亮獲得水杯與獲得飲料的概率相等
【解析】(1)確定基本事件的概率,利用古典概型的概率公式求小亮獲得玩具的概率;(2)求出小亮獲得水杯與獲得飲料的概率,即可得出結論.;本題考查概率的計算,考查古典概型,確定基本事件的個數是關鍵.
【考點精析】利用幾何概型對題目進行判斷即可得到答案,需要熟知幾何概型的特點:1)試驗中所有可能出現的結果(基本事件)有無限多個;2)每個基本事件出現的可能性相等.
科目:高中數學 來源: 題型:
【題目】已知橢圓的左頂點為A,右焦點為F,過點F的直線交橢圓于B,C兩點.
(1)求該橢圓的離心率;
(2)設直線AB和AC分別與直線x=4交于點M,N,問:x軸上是否存在定點P使得MP⊥NP?若存在,求出點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點A(0,-2),橢圓E: (a>b>0)的離心率為
,F是橢圓E的右焦點,直線AF的斜率為
,O為坐標原點.
(1)求E的方程;
(2)設過點A的動直線l與E相交于P,Q兩點.當△OPQ的面積最大時,求l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,四邊形
是直角梯形,
,
,
底面
,
,
,
是
的中點.
(1)求證:平面平面
;
(2)若二面角的余弦值為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐V﹣ABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC=,O,M分別為AB,VA的中點.
(1)求證:VB∥平面MOC;
(2)求證:平面MOC⊥平面VAB
(3)求三棱錐V﹣ABC的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線
與拋物線
相交于
、
兩點.
(1)求證:“如果直線過點
,那么
”是真命題;
(2)寫出(1)中命題的逆命題,判斷它是真命題還是假命題,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列幾個命題
①方程有一個正實根,一個負實根,則
;
②函數是偶函數,但不是奇函數;
③命題“若,則
”的否命題為“若
,則
”;
④命題“,使得
”的否定是“
,都有
”;
⑤“”是“
”的充分不必要條件.
正確的是__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)的定義域為(-2,2),函數g(x)=f(x-1)+f(3-2x).
(1)求函數g(x)的定義域;
(2)若f(x)是奇函數,且在定義域上單調遞減,求不等式g(x)≤0的解集.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com