【題目】扇形AOB中心角為,所在圓半徑為
,它按如圖(Ⅰ)(Ⅱ)兩種方式有內接矩形CDEF.
(1)矩形CDEF的頂點C、D在扇形的半徑OB上,頂點E在圓弧AB上,頂點F在半徑OA上,設;
(2)點M是圓弧AB的中點,矩形CDEF的頂點D、E在圓弧AB上,且關于直線OM對稱,頂點C、F分別在半徑OB、OA上,設;
試研究(1)(2)兩種方式下矩形面積的最大值,并說明兩種方式下哪一種矩形面積最大?
科目:高中數學 來源: 題型:
【題目】如圖所示,過點P分別做圓O的切線PA、PB和割線PCD,弦BE交CD于F,滿足P、B、F、A四點共圓.
(Ⅰ)證明:AE∥CD;
(Ⅱ)若圓O的半徑為5,且PC=CF=FD=3,求四邊形PBFA的外接圓的半徑.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某籃球隊對籃球運動員的籃球技能進行統計研究,針對籃球運動員在投籃命中時,運動員在籃筐中心的水平距離這項指標,對某運動員進行了若干場次的統計,依據統計結果繪制如下頻率分布直方圖:
(Ⅰ)依據頻率分布直方圖估算該運動員投籃命中時,他到籃筐中心的水平距離的中位數;
(Ⅱ)在某場比賽中,考察他前4次投籃命中到籃筐中心的水平距離的情況,并且規定:運動員投籃命中時,他到籃筐中心的水平距離不少于4米的記1分,否則扣掉1分.用隨機變量X表示第4次投籃后的總分,將頻率視為概率,求X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱中,各個側面均是邊長為
的正方形,
為線段
的中點.
(1)求證:直線平面
;
(2)求直線與平面
所成角的余弦值;
(3)設為線段
上任意一點,在
內的平面區域(包括邊界)是否存在點
,使
,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在2019迎新年聯歡會上,為了活躍大家氣氛,設置了“摸球中獎”游戲,桌子上放置一個不透明的箱子,箱子中有3個黃色、3個白色的乒乓球(其體積、質地完全相同)游戲規則:從箱子中隨機摸出3個球,若摸得同一顏色的3個球,摸球者中獎價值50元獎品;若摸得非同一顏色的3個球,摸球者中獎價值20元獎品.
(1)摸出的3個球為白球的概率是多少?
(2)假定有10人次參與游戲,試從概率的角度估算一下需要準備多少元錢購買獎品?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了得到函數y=3cos2x的圖象,只需把函數y=3sin(2x+ )的圖象上所有的點( )
A.向右平行移動 個單位長度
B.向右平行移動 個單位長度
C.向左平行移動 個單位長度
D.向左平移移動 個單位長度
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓C: =1(α>b>0)經過點(
,
),且原點、焦點,短軸的端點構成等腰直角三角形.
(1)求橢圓E的方程;
(2)是否存在圓心在原點的圓,使得該圓的任意一條切線(切線斜率存在)與橢圓C恒有兩個交點A,B.且 ?若存在,求出該圓的方程,若不存在說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】據相關規定,24小時內的降水量為日降水量(單位:mm),不同的日降水量對應的降水強度如表:
日降水量 | (0,10) | [10,25) | [25,50) | [50,100) | [100,250) | [250,+∞) |
降水強度 | 小雨 | 中雨 | 大雨 | 暴雨 | 大暴雨 | 特大暴雨 |
為分析某市“主汛期”的降水情況,從該市2015年6月~8月有降水記錄的監測數據中,隨機抽取10天的數據作為樣本,具體數據如下:
16 12 23 65 24 37 39 21 36 68
(1)請完成以如表示這組數據的莖葉圖;
(2)從樣本中降水強度為大雨以上(含大雨)天氣的5天中隨機選取2天,求恰有1天是暴雨天氣的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com