精英家教網 > 高中數學 > 題目詳情
若函數f(x)同時滿足①有反函數;②是奇函數;③定義域與值域相同.則f(x)的解析式可能是( 。
A、f(x)=-x3
B、f(x)=x3+1
C、f(x)=
ex+e-x
2
D、f(x)=lg
1-x
1+x
分析:先依據奇函數排除一些選項,再根據定義域與值域是否相同,又排除一些選項,最后根據是否有反函數,即可得出答案.
解答:解:由于f(x)=x3+1非奇非偶函數,f(x)=
ex+e-x
2
是偶函數,
即B、C不是奇函數,
又f(x)=lg
1-x
1+x
的定義域為(-1,1),值域不是(-1,1),
故D定義域與值域不同,
故只有A正確.
故選A.
點評:本題主要考查了函數奇偶性的判斷.設函數y=f(x)的定義域為D,如果對D內的任意一個x,都有x∈D,且f(-x)=-f(x),則這個函數叫做奇函數.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

若函數f(x)同時滿足下列三個性質:
①最小正周期為π;
②圖象關于直線x=
π
3
對稱;
③在區間[-
π
6
π
3
]上是增函數.
則y=f(x)的解析式可以是( 。
A、y=sin(2x-
π
6
B、y=sin(
x
2
+
π
6
C、y=cos(2x-
π
6
D、y=cos(2x+
π
3

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數f(x)同時滿足:①對于定義域上的任意x,恒有f(x)+f(-x)=0;  ②對于定義域上的任意x1,x2,當x1≠x2時,恒有
f(x1)-f(x2
x1-x2
<0
,則稱函數f(x)為“理想函數”.給出下列四個函數中:
(1)f(x)=
1
x
   
(2)f(x)=x2  
(3)f(x)=
2x-1
2x+1
 
(4)f(x)=
-x2   x≥0
x2    x<0

能被稱為“理想函數”的有
(4)
(4)
(填相應的序號).

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數f(x)同時滿足:①對于定義域上的任意x,恒有f(-x)+f(x)=0;②對于定義域上的任意x1,x2,當x1≠x2時,恒有
f(x1)-f(x2)
x1-x2
>0
,則稱函數f(x)為“理想函數”,給出下列四個函數中:
①f(x)=2x
②f(x)=-
1
x

③f(x)=log2x2
④f(x)=
ex-1
ex+1

⑤f(x)=
-x2(x<0)
x2(x≥0)

能被稱為“理想函數”的有
①④⑤
①④⑤

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數f(x)同時滿足以下兩個條件:①f(x)在其定義域上是單調函數;②在f(x)的定義域內存在區間[a,b],使得f(x)在[a,b]上的值域是[a,b].則稱函數f(x)為“自強”函數.
(1)判斷函數f(x)=2x-1是否為“自強”函數?若是,則求出a,b若不是,說明理由;
(2)若函數f(x)=
2x-1
+t是“自強”函數,求實數t的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视